Math 310 (35180), Fall 2015
 Instructor: Chris Skalit
 Quiz 9

Name: \qquad UIN: \qquad

1. (6 points) Let $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$. Diagonalize A. That is, find a factorization $A=S D S^{-1}$ where D is diagonal and the columns of S are eigenvectors for A.

Solution: The characteristic polynomial for A is $P_{A}(t)=\operatorname{det}(A-t I)=(1-t)(2-t)-2=$ $t(t-3)$. Hence the eigenvalues are 0 and 3 . Our eigenspaces

$$
\begin{gathered}
E_{0}=\operatorname{Nul}(A)=\operatorname{Nul}\left(\left[\begin{array}{ll}
1 & 2 \\
1 & 2
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{r}
-2 \\
1
\end{array}\right]\right\} \\
E_{3}=\operatorname{Nul}(A-3 I)=\operatorname{Nul}\left(\left[\begin{array}{rr}
-2 & 2 \\
1 & -1
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Hence, we can put $S=\left[\begin{array}{rr}-2 & 1 \\ 1 & 1\end{array}\right], S^{-1}=\left[\begin{array}{rr}-1 / 3 & 1 / 3 \\ 1 / 3 & 2 / 3\end{array}\right]$, and $D=\left[\begin{array}{ll}0 & 0 \\ 0 & 3\end{array}\right]$.
2. (4 points) Denote by \mathbb{P}_{2} the space of polynomials having degree at most 2 . Let $\mathcal{B}=$ $\left\{g_{1}, g_{2}, g_{3}\right\}$ be the standard basis:

$$
g_{1}(x)=1 \quad g_{2}(x)=x \quad g_{3}(x)=x^{2}
$$

Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{2}$ be the linear transformation defined by $T(f)=f+\frac{d f}{d x}$. Write down the matrix $[T]_{\mathcal{B}}$ for T with respect to \mathcal{B}, and use it to find all eigenvalues of T (you do not need to compute the corresponding eigenvectors).

Solution:

$$
\begin{array}{lllc}
T\left(g_{1}\right) & = & 1 & = \\
g_{1} \\
T\left(g_{2}\right) & = & x+1 & = \\
g_{1}+g_{2} \\
T\left(g_{3}\right) & = & x^{2}+2 x & = \\
2 g_{2}+g_{3}
\end{array}
$$

Thus, $[T]_{\mathcal{B}}=\left[\left[T\left(g_{1}\right)\right]_{\mathcal{B}} \quad\left[T\left(g_{2}\right)\right]_{\mathcal{B}} \quad\left[T\left(g_{3}\right)\right]_{\mathcal{B}}\right]=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$. With $B=[T]_{\mathcal{B}}$, we compute the characteristic polynomial $P_{B}(t)=\operatorname{det}(B-t I)=(1-t)^{3}$. Hence the only eigenvalue of T is 1 (with corresponding eigenspace spanned by g_{1}).

