Math 310 (33886), Fall 2016
 Instructor: Chris Skalit Exam 1

No calculators or any other electronic devices are permitted on this exam. Show your work.

1. (15 points) Find all solutions to the following system of equations:

$$
\begin{aligned}
x_{1}+3 x_{2}+x_{3} & =-2 \\
-2 x_{1}-2 x_{2} & =-2 \\
x_{2}+x_{3} & =-2
\end{aligned}
$$

Solution: The augmented matrix for this system is $J=\left[\begin{array}{rrrr}1 & 3 & 1 & -2 \\ -2 & -2 & 0 & -2 \\ 0 & 1 & 1 & -2\end{array}\right]$.
Since rref $J=\left[\begin{array}{rrrr}1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1\end{array}\right]$, we conclude that

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]
$$

2. Let $A=\left[\begin{array}{llll}1 & 2 & 0 & -1 \\ 1 & 2 & 1 & -4 \\ 3 & 6 & 0 & -3\end{array}\right]$. Note that $\operatorname{rref}(A)=\left[\begin{array}{rrrr}1 & 2 & 0 & -1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 0\end{array}\right]$. Let $\mathbf{x}_{0}=\left[\begin{array}{r}1 \\ 2 \\ 0 \\ -1\end{array}\right]$.
(a) (5 points) Write down all solutions $\mathbf{x} \in \mathbb{R}^{4}$ to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. Solution: Note that it suffices to solve the system $(\operatorname{rref} A) \mathbf{x}=\mathbf{0}$, so if $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$, we obtain the relations

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{4} & =0 \\
x_{3}-3 x_{4} & =0
\end{aligned}
$$

Our dependent variables correspond to pivot columns and thus are x_{1} and x_{3}. Writing these in terms of the other (free) variables we see that our solutions are

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-2 x_{2}+x_{4} \\
x_{2} \\
3 x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

(b) (3 points) If $\mathbf{b}=A \mathbf{x}_{0}$, what is \mathbf{b} ?

Solution:

$$
A \mathbf{x}_{0}=\left[\begin{array}{llll}
1 & 2 & 0 & -1 \\
1 & 2 & 1 & -4 \\
3 & 6 & 0 & -3
\end{array}\right]\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
6 \\
9 \\
18
\end{array}\right]
$$

(c) (3 points) Write down all solutions $\mathbf{x} \in \mathbb{R}^{4}$ to the matrix equation $A \mathbf{x}=\mathbf{b}$. (Hint: Use part (a).)
Solution: A generic solution \mathbf{y} may be written as $\mathbf{y}=\mathbf{x}_{0}+\mathbf{x}$ where \mathbf{x} is a solution to the homogeneous equation $A \mathbf{x}=\mathbf{0}$. Hence,

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-2 x_{2}+x_{4} \\
x_{2} \\
3 x_{4} \\
x_{4}
\end{array}\right]+\left[\begin{array}{r}
1 \\
2 \\
0 \\
-1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

(d) (3 points) Are the columns of A linearly independent vectors in \mathbb{R}^{3} ? Explain in one sentence.

Solution: NO. Since $A \mathbf{x}=\mathbf{0}$ has non-trivial solutions, we conclude that there are non-trivial relations among the columns of A.
(e) (3 points) If $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is the linear transformation defined by $T(\mathbf{x})=A \mathbf{x}$, what are m and n ?
Solution: T is defined by the matrix A, which has 4 columns and 3 rows. Thus, A acts on vectors $\mathbf{x} \in \mathbf{R}^{4}$ and returns vectors in \mathbf{R}^{3}. That is $m=3, n=4$.
(f) (3 points) Is T surjective (onto)? Explain in one sentence.

Solution: No. This is clear becuase ref A does not have a pivot in each row.
3. (a) (8 points) Let $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear map such that $S\left(\left[\begin{array}{l}x \\ y \\ z\end{array}\right]\right)=\left[\begin{array}{c}x+y+z \\ 2 x-y \\ x+3 z\end{array}\right]$. What is the matrix C such that $S(\mathbf{v})=C \mathbf{v}$ for all $\mathbf{v} \in \mathbb{R}^{3}$?

Solution:

$$
S\left(\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right] \quad S\left(\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]\right)=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \quad S\left(\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right)=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right]
$$

Hence, the matrix that represents S is $C=\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 3\end{array}\right]$.
(b) (7 points) If $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, write the vector $\mathbf{w}=\left[\begin{array}{l}5 \\ 8\end{array}\right]$ as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.
Solution: We want to solve the equation $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\mathbf{w}$, or equivalently,

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
5 \\
8
\end{array}\right] .
$$

We find that $c_{1}=1, c_{2}=2$.
(c) (5 points) Let $U: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that $U\left(\mathbf{v}_{1}\right)=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ and $U\left(\mathbf{v}_{2}\right)=\left[\begin{array}{r}2 \\ 0 \\ -1\end{array}\right]$. Use your answer to part (b) to find $U(\mathbf{w})$.
Solution: From part (b), we see that

$$
U(\mathbf{w})=U\left(\mathbf{v}_{1}+2 \mathbf{v}_{2}\right)=U\left(\mathbf{v}_{1}\right)+2 U\left(\mathbf{v}_{2}\right)=\left[\begin{array}{r}
5 \\
1 \\
-1
\end{array}\right]
$$

4. (a) (15 points) Let $D=\left[\begin{array}{rrr}1 & 0 & -2 \\ -1 & 1 & 3 \\ 1 & 0 & -1\end{array}\right]$. Compute D^{-1}.

Solution: We write the 3×6 matrix whose first three columns are those of D and whose latter three is the 3×3 identity matrix:

$$
Q=\left[\begin{array}{rrrrrr}
1 & 0 & -2 & 1 & 0 & 0 \\
-1 & 1 & 3 & 0 & 1 & 0 \\
1 & 0 & -1 & 0 & 0 & 1
\end{array}\right]
$$

Since we have rref $Q=\left[\begin{array}{rrrrrr}1 & 0 & 0 & -1 & 0 & 2 \\ 0 & 1 & 0 & 2 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 & 1\end{array}\right]$, we see that $D^{-1}=\left[\begin{array}{rrr}-1 & 0 & 2 \\ 2 & 1 & -1 \\ -1 & 0 & 1\end{array}\right]$
(b) (5 points) Let $E=\left[\begin{array}{rrr}-1 & -1 & 0 \\ 2 & 1 & 0 \\ 5 & 1 & 1\end{array}\right]$. Using the fact that $E^{-1}=\left[\begin{array}{rrr}1 & 1 & 0 \\ -2 & -1 & 0 \\ -3 & -4 & 1\end{array}\right]$, find the unique solution $\mathbf{x} \in \mathbb{R}^{3}$ to $E \mathbf{x}=\mathbf{y}$ where $\mathbf{y}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
Solution: If $E \mathbf{x}=\mathbf{y}$, then $\mathbf{x}=E^{-1} \mathbf{y}=\left[\begin{array}{rrr}1 & 1 & 0 \\ -2 & -1 & 0 \\ -3 & -4 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{r}2 \\ -3 \\ -6\end{array}\right]$.
5. Let $F=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right], G=\left[\begin{array}{rr}2 & 1 \\ -1 & 1\end{array}\right]$.
(a) (7 points) Compute $F G$ and $G F$.

Solution:

$$
\begin{gathered}
F G=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{cc}
2 & 1 \\
-1 & 1
\end{array}\right]=\left[\begin{array}{rr}
0 & 3 \\
-1 & 4
\end{array}\right] \\
G F=\left[\begin{array}{rr}
2 & 1 \\
-1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
3 & 7 \\
0 & 1
\end{array}\right]
\end{gathered}
$$

(b) (4 points) What are $\operatorname{det}(F)$ and $\operatorname{det}(G)$?

Solution:

$$
\operatorname{det}(F)=1 \quad \operatorname{det}(G)=3
$$

(c) (4 points) What is $\operatorname{det}(F G F G F)$? Is $F G F G F$ invertible? Explain in one sentence.

Solution: Remember that for square matrices A and $B, \operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$. Hence, $\operatorname{det}(F G F G F)=\operatorname{det}(F)^{3} \operatorname{det}(G)^{2}=9$. The matrix is invertible as its determinant is nonzero. Note, however, that $F G F G F \neq F^{3} G^{2}$.
6. (10 points) Let $H=\left[\begin{array}{rrrr}2 & 2 & 2 & 2 \\ 1 & 2 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & 3 & 1 & 0\end{array}\right]$. Find $\operatorname{det}(H)$. (Hint: You might want to try row-reducing H to a triangular matrix and note how the determinant changes with each operation you make.)

Solution: Dividing the first row by 2 gives $H^{\prime}=\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 2 \\ 0 & 1 & -1 & 2 \\ 1 & 3 & 1 & 0\end{array}\right]$ Note that $\operatorname{det}\left(H^{\prime}\right)=$ $\frac{1}{2} \operatorname{det}(H)$ By performing a sequence of operations that add multiples of one row to another, we get $H^{\prime \prime}=\left[\begin{array}{rrrr}1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -3\end{array}\right]$. Operations of this type do not change the determinant, so $\operatorname{det}\left(H^{\prime}\right)=\operatorname{det}\left(H^{\prime \prime}\right)$. Since $H^{\prime \prime}$ is triangular, its determinant is the product of the diagonal entries: $\operatorname{det}\left(H^{\prime \prime}\right)=3$. Hence, $\operatorname{det}(H)=6$.

