Math 310 (33886), Spring 2016

 Instructor: Chris Skalit

 Instructor: Chris Skalit
 Exam II

Name: \qquad UIN: \qquad

1. Put $A=\left[\begin{array}{rrrrr}1 & 0 & 1 & 0 & 0 \\ 2 & 0 & 2 & 1 & -1 \\ 1 & 1 & 3 & 0 & 0 \\ 3 & 1 & 5 & 1 & -1\end{array}\right]$ and note that $\operatorname{rref}(A)=\left[\begin{array}{rrrrr}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$.
(a) (2 points) Write down a basis for $\operatorname{Row}(A)$. What is the dimension of this space?

Solution: Since the row space of a matrix is unchanged under elementary row operations, we have $\operatorname{Row}(A)=\operatorname{Row}(\operatorname{rref} A)$. Thus, it's clear that $\operatorname{Row}(A)$ has basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ 0 \\ 1 \\ -1\end{array}\right]\right\}$. Hence, $\operatorname{dim}(\operatorname{Row}(A))=3$.
(b) (3 points) Write down a basis for $\operatorname{Col}(A)$. What is the dimension of this space?

Solution: The columns of A span the column space. We can extract a basis for this space by selecting those columns which correspond to pivot columns in rref A :

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
3
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]\right\} . \text { Hence, } \operatorname{dim}(\operatorname{Col}(A))=3
$$

(c) (5 points) Write down a basis for $\operatorname{Nul}(A)$. What is the dimension of this space?

Solution: If a generic vector $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ belongs to $\operatorname{Nul}(A)=\operatorname{Nul}(\operatorname{rref} A)$, then we see from $\operatorname{rref} A$ that the following relations are imposed:

$$
\begin{array}{r}
x_{1}+x_{3}=0 \\
x_{2}+2 x_{3}=0 \\
x_{4}-x_{5}=0
\end{array}
$$

Solving for the dependent (pivot) variables, we get

$$
\operatorname{Nul}(A)=\left\{\left[\begin{array}{r}
-x_{3} \\
-2 x_{3} \\
x_{3} \\
x_{5} \\
x_{5}
\end{array}\right]: x_{3}, x_{5} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
1
\end{array}\right]\right\}
$$

This set is clearly linearly independent; $\operatorname{dim}(\operatorname{Nul} A)=2$.
(d) (2 points) If B is a 4×7 matrix with $\operatorname{dim}(\operatorname{Col}(B))=2$, what are the dimenions of Row (B) and $\operatorname{Nul}(B)$?
Solution: B has 7 columns. By the rank-nullity theorem, $\operatorname{dim}(\operatorname{Col}(B))+\operatorname{dim}(\operatorname{Nul}(B))=$ 7. Hence, $\operatorname{dim}(\operatorname{Nul}(B))=5$. Since the row and column space of a matrix always have the same dimension, $\operatorname{dim}(\operatorname{Row}(B))=2$.
(e) (3 points) Is there a 4×8 matrix C with linearly independent columns? Explain in one sentence.

Solution: If the columns of C were linearly independent, then the nullspace would be zero-dimensional. This would imply that the rank of C would be equal to 8 . But this is impossible since C has 4 rows and therefore, at most, 4 pivots.
2. Let V be a 3 -dimensional vector space with bases $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$, subject to the relations:

$$
\begin{aligned}
\mathbf{a}_{1} & =\mathbf{b}_{2} \\
\mathbf{a}_{2} & =\mathbf{b}_{1}+2 \mathbf{b}_{3} \\
\mathbf{a}_{3} & =2 \mathbf{b}_{1}+\mathbf{b}_{2}+3 \mathbf{b}_{3}
\end{aligned}
$$

(a) (4 points) Write down the change of basis matrix $P_{\mathcal{B} \leftarrow \mathcal{A}}$ which transforms \mathcal{A} to \mathcal{B} coordinates.
Solution: The i-th column of $P_{\mathcal{B} \leftarrow \mathcal{A}}$ is $\left[\mathbf{a}_{i}\right]_{\mathcal{B}}$, whence

$$
P_{\mathcal{B} \leftarrow \mathcal{A}}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
0 & 2 & 3
\end{array}\right] .
$$

(b) (8 points) Compute the change of basis matrix $P_{\mathcal{A} \leftarrow \mathcal{B}}$.

Solution:

$$
P_{\mathcal{A} \leftarrow \mathcal{B}}=\left(P_{\mathcal{B} \leftarrow \mathcal{A}}\right)^{-1}=\left[\begin{array}{rrr}
-2 & 1 & 1 \\
-3 & 0 & 2 \\
2 & 0 & -1
\end{array}\right]
$$

(c) (4 points) If $\mathbf{x}=\mathbf{a}_{1}-2 \mathbf{a}_{3}$, what are the coordinate vectors $[\mathbf{x}]_{\mathcal{A}}$ and $[\mathbf{x}]_{\mathcal{B}}$?

Solution: We can read off the \mathcal{A}-coordinate vector immediately: $[\mathbf{x}]_{\mathcal{A}}=\left[\begin{array}{r}1 \\ 0 \\ -2\end{array}\right]$. For the latter, we have

$$
[\mathbf{x}]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{A}}[\mathbf{x}]_{\mathcal{A}}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
0 & 2 & 3
\end{array}\right]\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{l}
-4 \\
-1 \\
-6
\end{array}\right] .
$$

(d) (3 points) Let $T: V \rightarrow V$ be linear such that $T\left(\mathbf{a}_{1}\right)=2 \mathbf{a}_{1}-\mathbf{a}_{2}, T\left(\mathbf{a}_{2}\right)=\mathbf{a}_{1}-\mathbf{a}_{3}$, and $T\left(\mathbf{a}_{3}\right)=\mathbf{0}$. Find the matrix $[T]_{\mathcal{A}}$ which expresses T in \mathcal{A}-coordinates.
Solution: The i-th column of $[T]_{\mathcal{A}}$ is $\left[T\left(\mathbf{a}_{i}\right)\right]_{\mathcal{A}}$, so

$$
[T]_{\mathcal{A}}=\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]
$$

(e) (3 points) If $\mathbf{y}=T(\mathbf{x})$, what is $[\mathbf{y}]_{\mathcal{A}}$?

Solution:

$$
[\mathbf{y}]_{\mathcal{A}}=[T(\mathbf{x})]_{\mathcal{A}}=[T]_{\mathcal{A}}[\mathbf{x}]_{\mathcal{A}}=\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{r}
1 \\
0 \\
-2
\end{array}\right]=\left[\begin{array}{r}
2 \\
-1 \\
0
\end{array}\right]
$$

(f) (3 points) Express $[T]_{\mathcal{B}}$ as a product of matrices. You do not need to multiply the matrices.

Solution:

$$
[T]_{\mathcal{B}}=P_{\mathcal{B} \leftarrow \mathcal{A}}[T]_{\mathcal{A}} P_{\mathcal{A} \leftarrow \mathcal{B}}=\left[\begin{array}{lll}
0 & 1 & 2 \\
1 & 0 & 1 \\
0 & 2 & 3
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 0 \\
-1 & 0 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{rrr}
-2 & 1 & 1 \\
-3 & 0 & 2 \\
2 & 0 & -1
\end{array}\right]
$$

3. Let $F=\left[\begin{array}{rrr}2 & 1 & 2 \\ -1 & 4 & 1 \\ 0 & 0 & 1\end{array}\right]$
(a) (6 points) Compute the characteristic polynomial of F and find all eigenvalues.

Solution: Our characteristic polynomial is

$$
P_{F}(t)=\operatorname{det}(F-t I)=\operatorname{det}\left(\left[\begin{array}{ccc}
2-t & 1 & 2 \\
-1 & 4-t & 1 \\
0 & 0 & 1-t
\end{array}\right]\right)
$$

By using cofactor expansion along the bottom row, we deduce that

$$
P_{F}(t)=(1-t) \operatorname{det}\left(\left[\begin{array}{rr}
2-t & 1 \\
-1 & 4-t
\end{array}\right]\right)=(1-t)\left(t^{2}-6 t+9\right)=(1-t)(t-3)^{2}
$$

Our eigenvalues are therefore 1 and 3 .
(b) (8 points) For each eigenvalue computed in part (a), find the corresponding eigenspace.

Solution: For the eigenvalue 1, we have
$E_{1}=\operatorname{Nul}(F-I)=\operatorname{Nul}\left(\left[\begin{array}{rrr}1 & 1 & 2 \\ -1 & 3 & 1 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rrr}1 & 0 & 5 / 4 \\ 0 & 1 & 3 / 4 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{r}-5 / 4 \\ -3 / 4 \\ 1\end{array}\right]\right\}$.
For the eigenvalue 3, we have
$E_{3}=\operatorname{Nul}(F-3 I)=\operatorname{Nul}\left(\left[\begin{array}{rrr}-1 & 1 & 2 \\ -1 & 1 & 1 \\ 0 & 0 & -2\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$.
(c) (1 point) Is F diagonalizable? Explain in one sentence.

Solution: No, there are only two linearly independent eigenvectors. In particular, the eigenvalue 3 has algebraic multiplicity 2 while its corresponding eigenspace is only 1 -dimensional.
4. Let \mathcal{P}_{2} be the space of polynomials having degree at most two. Let $\mathcal{C}=\left\{1, t, t^{2}\right\}$ be the standard basis.
(a) (6 points) Let $\phi: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ be the linear map defined by $\phi(f)=2 \frac{d^{2} f}{d t^{2}}+t \frac{d f}{d t}+f$. Write down $[\phi]_{\mathcal{C}}$.

Solution: We have the functions $h_{0}(t)=1, h_{1}(t)=t$ and $h_{2}(t)=t^{2}$. These form a basis for \mathcal{P}_{2}.

$$
\begin{gathered}
\phi\left(h_{0}\right)=2 \frac{d^{2} h_{0}}{d t^{2}}+t \frac{d h_{0}}{d t}+h_{0}(t)=2 \cdot 0+t \cdot 0+1=1 \Rightarrow\left[\phi\left(h_{0}\right)\right]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \\
\phi\left(h_{1}\right)=2 \frac{d^{2} h_{1}}{d t^{2}}+t \frac{d h_{1}}{d t}+h_{1}(t)=2 \cdot 0+t \cdot 1+t=2 t \Rightarrow\left[\phi\left(h_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right] \\
\phi\left(h_{2}\right)=2 \frac{d^{2} h_{2}}{d t^{2}}+t \frac{d h_{2}}{d t}+h_{2}(t)=2 \cdot 2+t \cdot 2 t+t^{2}=4+3 t^{2} \Rightarrow\left[\phi\left(h_{2}\right)\right]_{\mathcal{C}}=\left[\begin{array}{l}
4 \\
0 \\
3
\end{array}\right]
\end{gathered}
$$

Hence, $[\phi]_{\mathcal{C}}=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(b) (7 points) Use your answer to part (a) to find a degree-two polynomial $g \in \mathcal{P}_{2}$ such that $\phi(g)=3 g$. (Hint: Compute the 3-eigenspace of the matrix $[\phi]_{\mathcal{C}}$ and then recast your answer in terms of a polynomial.)
Solution: We compute the 3-eigenspace of the matrix $J=[\phi]_{\mathcal{C}}=\left[\begin{array}{lll}1 & 0 & 4 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$:

$$
E_{3}=\operatorname{Nul}(J-3 I)=\operatorname{Nul}\left(\left[\begin{array}{rrr}
-2 & 0 & 4 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\right)=\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]=\operatorname{span}\left\{\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\}
$$

We note that the function $g(t)=2+t^{2}$ has \mathcal{C}-coordinates $[g]_{\mathcal{C}}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$.
(c) (5 points) Consider the linear transformation $\theta: \mathcal{P}_{2} \rightarrow \mathbb{R}$ defined via $\theta(f)=\int_{0}^{1} 6 t f(t) d t$. Suppose that $h(t)=a t+1$ and that $h \in \operatorname{ker}(\theta)$. Find a.

Solution: To say that $h \in \operatorname{ker} \theta$ means precisely that $\theta(h)=0$. We therefore solve the equation

$$
\begin{aligned}
& 0=\theta(h) \\
& 0=\int_{0}^{1} 6 t(h(t)) d t \\
& 0=\int_{0}^{1} 6 a t^{2}+6 t d t \\
& 0=2 a t^{3}+\left.3 t^{2}\right|_{0} ^{1} \\
& 0=2 a+3
\end{aligned}
$$

Hence, $a=-3 / 2$.
5. (7 points) Let $\mathbf{z}_{0}=\left[\begin{array}{l}0.58 \\ 0.42\end{array}\right]$. Consider the Markov Chain $\left(\mathbf{z}_{n}\right)$ defined via $\mathbf{z}_{n+1}=G \mathbf{z}_{n}$ where G is the stochastic matrix $\left[\begin{array}{ll}0.20 & 0.10 \\ 0.80 & 0.90\end{array}\right]$. Find $\lim _{n \rightarrow \infty} \mathbf{z}_{n}$.

Solution: Since G is a stochastic matrix with all non-zero entries, the general theory of Markov Chains asserts that G admits a unique steady state vector \mathbf{q} to which $\left(\mathbf{z}_{n}\right)$ converges. To find the steady state we just compute the 1-eigenspace of G :

$$
E_{1}=\operatorname{Nul}(G-I)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
8
\end{array}\right]\right\}
$$

The steady state $\mathbf{q} \in E_{1}$ has the definiting property that its entries sum to 1 . We therefore rescale $\left[\begin{array}{l}1 \\ 8\end{array}\right]$ so that

$$
\mathbf{q}=\frac{1}{1+8}\left[\begin{array}{l}
1 \\
8
\end{array}\right]=\left[\begin{array}{l}
1 / 9 \\
8 / 9
\end{array}\right]
$$

6. Let $H=\left[\begin{array}{rr}7 & -3 \\ 10 & -4\end{array}\right], \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$. Note that $H \mathbf{v}_{1}=\mathbf{v}_{1}$ and $H \mathbf{v}_{2}=2 \mathbf{v}_{2}$. Thus, $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a basis for \mathbb{R}^{2} consisting of eigenvectors for H.
(a) (6 points) Using the eigenvectors and eigenvalues that have already been computed for you above, diagonalize H. That is, obtain a factorization $H=S D S^{-1}$ where D is diagonal.

Solution: S is the matrix whose columns are the eigenvectors: $S=\left[\begin{array}{ll}1 & 3 \\ 2 & 5\end{array}\right]$. We place the corresponding eigenvales along the diagonal of $D: D=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$. Hence,

$$
H=S D S^{-1}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{rr}
-5 & 3 \\
2 & -1
\end{array}\right]
$$

(b) (7 points) Compute H^{100}. Your answer should be a single 2×2 matrix whose entries involve 2^{100}.

Solution: Recall that raising a diagonal matrix to the n-th power is the same thing as raising each entry to the n-th power - something that is wildly false in general. Thus, to compute H^{100} we apply the factorization obtained in part (a):

$$
H^{100}=S D^{100} S^{-1}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{rr}
1 & 0 \\
0 & 2^{100}
\end{array}\right]\left[\begin{array}{rr}
-5 & 3 \\
2 & -1
\end{array}\right]=\left[\begin{array}{rr}
-5+6\left(2^{100}\right) & 3-3\left(2^{100}\right) \\
-10+10\left(2^{100}\right) & 6-5\left(2^{100}\right)
\end{array}\right] .
$$

(c) (3 points) Consider the differential equation $\frac{d \mathbf{x}}{d t}=H \mathbf{x}(t)$. Write the generation solution to this equation.

Solution:

$$
\mathbf{x}(t)=c_{1} e^{t} \mathbf{v}_{1}+c_{2} e^{2 t} \mathbf{v}_{2}=c_{1} e^{t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

(d) (4 points) Find the particular solution subject to the condition that $\mathbf{x}(0)=\left[\begin{array}{l}2 \\ 2\end{array}\right]$.

Solution: We need to find the particular values of c_{1}, c_{2} for which we have

$$
\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\mathbf{x}(0)=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}=\left[\begin{array}{ll}
1 & 3 \\
2 & 5
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

The solution to this linear system of equations is $c_{1}=-4$ and $c_{2}=2$.

