
Math 310 (33886), Spring 2016
Instructor: Chris Skalit

Exam II

Name: UIN:

1. Put A =


1 0 1 0 0
2 0 2 1 −1
1 1 3 0 0
3 1 5 1 −1

 and note that rref(A) =


1 0 1 0 0
0 1 2 0 0
0 0 0 1 −1
0 0 0 0 0

.

(a) (2 points) Write down a basis for Row(A). What is the dimension of this space?

Solution: Since the row space of a matrix is unchanged under elementary row
operations, we have Row(A) = Row(rref A). Thus, it’s clear that Row(A) has basis


1
0
1
0
0

 ,


0
1
2
0
0

 ,


0
0
0
1
−1


. Hence, dim(Row(A)) = 3.

(b) (3 points) Write down a basis for Col(A). What is the dimension of this space?

Solution: The columns of A span the column space. We can extract a basis for
this space by selecting those columns which correspond to pivot columns in rref A:


1
2
1
3

 ,


0
0
1
1

 ,


0
1
0
1


. Hence, dim(Col(A)) = 3.

(c) (5 points) Write down a basis for Nul(A). What is the dimension of this space?

Solution: If a generic vector


x1
x2
x3
x4
x5

 belongs to Nul(A) = Nul(rref A), then we see

from rref A that the following relations are imposed:

x1 + x3 = 0
x2 + 2x3 = 0
x4 − x5 = 0

Solving for the dependent (pivot) variables, we get

Nul(A) =




−x3
−2x3
x3
x5
x5

 : x3, x5 ∈ R

 = span




−1
−2

1
0
0

 ,


0
0
0
1
1






This set is clearly linearly independent; dim(NulA) = 2.

(d) (2 points) If B is a 4× 7 matrix with dim(Col(B)) = 2, what are the dimenions of
Row(B) and Nul(B)?

Solution: B has 7 columns. By the rank-nullity theorem, dim(Col(B))+dim(Nul(B)) =
7. Hence, dim(Nul(B)) = 5. Since the row and column space of a matrix always
have the same dimension, dim(Row(B)) = 2.

(e) (3 points) Is there a 4 × 8 matrix C with linearly independent columns? Explain
in one sentence.

Solution: If the columns of C were linearly independent, then the nullspace would
be zero-dimensional. This would imply that the rank of C would be equal to 8. But
this is impossible since C has 4 rows and therefore, at most, 4 pivots.



2. Let V be a 3-dimensional vector space with bases A = {a1, a2, a3} and B = {b1,b2,b3},
subject to the relations:

a1 = b2

a2 = b1 + 2b3

a3 = 2b1 + b2 + 3b3

(a) (4 points) Write down the change of basis matrix PB←A which transforms A to B
coordinates.

Solution: The i-th column of PB←A is [ai]B, whence

PB←A =

0 1 2
1 0 1
0 2 3

 .
(b) (8 points) Compute the change of basis matrix PA←B.

Solution:

PA←B = (PB←A)−1 =

−2 1 1
−3 0 2

2 0 −1


(c) (4 points) If x = a1 − 2a3, what are the coordinate vectors [x]A and [x]B?

Solution: We can read off the A-coordinate vector immediately: [x]A =

 1
0
−2

.

For the latter, we have

[x]B = PB←A[x]A =

0 1 2
1 0 1
0 2 3

 1
0
−2

 =

−4
−1
−6

 .
(d) (3 points) Let T : V → V be linear such that T (a1) = 2a1 − a2, T (a2) = a1 − a3,

and T (a3) = 0. Find the matrix [T ]A which expresses T in A-coordinates.

Solution: The i-th column of [T ]A is [T (ai)]A, so

[T ]A =

 2 1 0
−1 0 0

0 −1 0

 .
(e) (3 points) If y = T (x), what is [y]A?

Solution:

[y]A = [T (x)]A = [T ]A[x]A =

 2 1 0
−1 0 0

0 −1 0

 1
0
−2

 =

 2
−1

0





(f) (3 points) Express [T ]B as a product of matrices. You do not need to multiply the
matrices.

Solution:

[T ]B = PB←A[T ]APA←B =

0 1 2
1 0 1
0 2 3

 2 1 0
−1 0 0

0 −1 0

−2 1 1
−3 0 2

2 0 −1





3. Let F =

 2 1 2
−1 4 1

0 0 1


(a) (6 points) Compute the characteristic polynomial of F and find all eigenvalues.

Solution: Our characteristic polynomial is

PF (t) = det(F − tI) = det

2− t 1 2
−1 4− t 1
0 0 1− t

 .

By using cofactor expansion along the bottom row, we deduce that

PF (t) = (1− t) det

([
2− t 1
−1 4− t

])
= (1− t)(t2 − 6t+ 9) = (1− t)(t− 3)2.

Our eigenvalues are therefore 1 and 3.

(b) (8 points) For each eigenvalue computed in part (a), find the corresponding eigenspace.

Solution: For the eigenvalue 1, we have

E1 = Nul(F−I) = Nul

 1 1 2
−1 3 1

0 0 0

 = Nul

1 0 5/4
0 1 3/4
0 0 0

 = span


−5/4
−3/4

1

 .

For the eigenvalue 3, we have

E3 = Nul(F−3I) = Nul

−1 1 2
−1 1 1

0 0 −2

 = Nul

1 −1 0
0 0 1
0 0 0

 = span


1

1
0

 .

(c) (1 point) Is F diagonalizable? Explain in one sentence.

Solution: No, there are only two linearly independent eigenvectors. In particular,
the eigenvalue 3 has algebraic multiplicity 2 while its corresponding eigenspace is
only 1-dimensional.



4. Let P2 be the space of polynomials having degree at most two. Let C = {1, t, t2} be the
standard basis.

(a) (6 points) Let φ : P2 → P2 be the linear map defined by φ(f) = 2
d2f

dt2
+ t

df

dt
+ f .

Write down [φ]C.

Solution: We have the functions h0(t) = 1, h1(t) = t and h2(t) = t2. These form
a basis for P2.

φ(h0) = 2
d2h0
dt2

+ t
dh0
dt

+ h0(t) = 2 · 0 + t · 0 + 1 = 1⇒ [φ(h0)]C =

1
0
0



φ(h1) = 2
d2h1
dt2

+ t
dh1
dt

+ h1(t) = 2 · 0 + t · 1 + t = 2t⇒ [φ(h1)]C =

0
2
0



φ(h2) = 2
d2h2
dt2

+ t
dh2
dt

+ h2(t) = 2 · 2 + t · 2t+ t2 = 4 + 3t2 ⇒ [φ(h2)]C =

4
0
3



Hence, [φ]C =

1 0 4
0 2 0
0 0 3

.

(b) (7 points) Use your answer to part (a) to find a degree-two polynomial g ∈ P2 such
that φ(g) = 3g. (Hint: Compute the 3-eigenspace of the matrix [φ]C and then recast
your answer in terms of a polynomial.)

Solution: We compute the 3-eigenspace of the matrix J = [φ]C =

1 0 4
0 2 0
0 0 3

:

E3 = Nul(J − 3I) = Nul

−2 0 4
0 −1 0
0 0 0

 =

1 0 −2
0 1 0
0 0 0

 = span


2

0
1


We note that the function g(t) = 2 + t2 has C-coordinates [g]C =

2
0
1

 .
(c) (5 points) Consider the linear transformation θ : P2 → R defined via

θ(f) =

∫ 1

0

6tf(t) dt. Suppose that h(t) = at+ 1 and that h ∈ ker(θ). Find a.



Solution: To say that h ∈ ker θ means precisely that θ(h) = 0. We therefore solve
the equation

0 = θ(h)

0 =

∫ 1

0

6t(h(t)) dt

0 =

∫ 1

0

6at2 + 6t dt

0 = 2at3 + 3t2
∣∣1
0

0 = 2a+ 3

Hence, a = −3/2.



5. (7 points) Let z0 =

[
0.58
0.42

]
. Consider the Markov Chain (zn) defined via zn+1 = Gzn

where G is the stochastic matrix

[
0.20 0.10
0.80 0.90

]
. Find lim

n→∞
zn.

Solution: Since G is a stochastic matrix with all non-zero entries, the general theory
of Markov Chains asserts that G admits a unique steady state vector q to which (zn)
converges. To find the steady state we just compute the 1-eigenspace of G:

E1 = Nul(G− I) = span

{[
1
8

]}
The steady state q ∈ E1 has the definiting property that its entries sum to 1. We

therefore rescale

[
1
8

]
so that

q =
1

1 + 8

[
1
8

]
=

[
1/9
8/9

]
.



6. Let H =

[
7 −3

10 −4

]
, v1 =

[
1
2

]
, v2 =

[
3
5

]
. Note that Hv1 = v1 and Hv2 = 2v2. Thus,

{v1,v2} is a basis for R2 consisting of eigenvectors for H.

(a) (6 points) Using the eigenvectors and eigenvalues that have already been computed
for you above, diagonalize H. That is, obtain a factorization H = SDS−1 where D
is diagonal.

Solution: S is the matrix whose columns are the eigenvectors: S =

[
1 3
2 5

]
. We

place the corresponding eigenvales along the diagonal of D: D =

[
1 0
0 2

]
. Hence,

H = SDS−1 =

[
1 3
2 5

] [
1 0
0 2

] [
−5 3

2 −1

]
.

(b) (7 points) Compute H100. Your answer should be a single 2×2 matrix whose entries
involve 2100.

Solution: Recall that raising a diagonal matrix to the n-th power is the same thing
as raising each entry to the n-th power – something that is wildly false in general.
Thus, to compute H100 we apply the factorization obtained in part (a):

H100 = SD100S−1 =

[
1 3
2 5

] [
1 0
0 2100

] [
−5 3

2 −1

]
=

[
−5 + 6(2100) 3− 3(2100)
−10 + 10(2100) 6− 5(2100)

]
.

(c) (3 points) Consider the differential equation
dx

dt
= Hx(t). Write the generation

solution to this equation.

Solution:

x(t) = c1e
tv1 + c2e

2tv2 = c1e
t

[
1
2

]
+ c2e

2t

[
3
5

]

(d) (4 points) Find the particular solution subject to the condition that x(0) =

[
2
2

]
.

Solution: We need to find the particular values of c1, c2 for which we have[
2
2

]
= x(0) = c1v1 + c2v2 =

[
1 3
2 5

] [
c1
c2

]
.

The solution to this linear system of equations is c1 = −4 and c2 = 2.


