Math 310, Spring 2016
 Instructor: Chris Skalit Quiz 1

Name: \qquad UIN: \qquad

1. (a) (5 points) Let $A=\left[\begin{array}{rrrr}1 & 2 & -1 & 1 \\ 2 & 3 & 0 & 5 \\ 0 & 1 & 1 & 3\end{array}\right]$. Find the reduced-row-echelon form of A.

Solution: We show the reduction step-by-step:

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
2 & 3 & 0 & 5 \\
0 & 1 & 1 & 3
\end{array}\right] \quad \text { add }(-2) \text { times R1 to R2 }} \\
& {\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
0 & -1 & 2 & 3 \\
0 & 1 & 1 & 3
\end{array}\right] \quad \text { multiply R2 by }(-1)} \\
& {\left[\begin{array}{rrrr}
1 & 2 & -1 & 1 \\
0 & 1 & -2 & -3 \\
0 & 1 & 1 & 3
\end{array}\right] \quad \text { add (-2) times R2 to R1; add }(-1) \text { times R2 and R3 }} \\
& {\left[\begin{array}{rrrr}
1 & 0 & 3 & 7 \\
0 & 1 & -2 & -3 \\
0 & 0 & 3 & 6
\end{array}\right] \quad \text { multiply R3 by } 1 / 3} \\
& {\left[\begin{array}{lrrr}
1 & 0 & 3 & 7 \\
0 & 1 & -2 & -3 \\
0 & 0 & 1 & 2
\end{array}\right] \quad \text { add } 2 \text { times R3 to R2; add }(-3) \text { times R3 to R1 }} \\
& {\left[\begin{array}{llrr}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]}
\end{aligned}
$$

(b) (1 point) Use your answer to part (a) to find all solutions to the following system of equations:

$$
\begin{aligned}
x_{1}+2 x_{2}-x_{3} & =1 \\
2 x_{1}+3 x_{2} & =5 \\
x_{2}+x_{3} & =3
\end{aligned}
$$

Solution: The matrix in part (a) is the augmented matrix associated to this system. From its reduced row-echelon form, we get $x_{1}=1, x_{2}=1, x_{3}=2$
2. Consider the vectors $\mathbf{x}=\left[\begin{array}{r}2 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 3\end{array}\right]$ in \mathbb{R}^{3}. Compute:
(a) (1 point) $\mathbf{x}+\mathbf{y}$

Solution:

$$
\mathbf{x}+\mathbf{y}=\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2
\end{array}\right]
$$

(b) (1 point) $2 \mathbf{x}-3 \mathbf{y}$

Solution:

$$
2 \mathbf{x}-3 \mathbf{y}=2\left[\begin{array}{r}
2 \\
1 \\
-1
\end{array}\right]-3\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1 \\
-11
\end{array}\right]
$$

3. (2 points) Determine all values of $\beta \in \mathbb{R}$ for which the system

$$
\begin{aligned}
& x_{1}+x_{2}=1 \\
& x_{1}+\beta x_{2}=0
\end{aligned}
$$

has NO solutions.

Solution: The augmented matrix for this system reads $\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & \beta & 0\end{array}\right]$. Adding (-1) times the first row to the second gives $\left[\begin{array}{rrr}1 & 1 & 1 \\ 0 & \beta-1 & -1\end{array}\right]$. In particular, we have the relation, $(\beta-1) x_{2}=-1$. For the system to be solvable, we need the coefficient of x_{2} to be nonzero. Otherwise, if $\beta-1=0$, the system has no solutions.

