Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 10

Name: \qquad UIN: \qquad
Let $\mathbf{x}=\left[\begin{array}{r}1 \\ 2 \\ -3\end{array}\right]$ and $\mathbf{y}=\left[\begin{array}{r}0 \\ 3 \\ -1\end{array}\right]$.

1. (1 point) Compute $\mathbf{x} \cdot \mathbf{y}$.

Solution:

$$
\mathbf{x} \cdot \mathbf{y}=1(0)+2(3)-3(-1)=9
$$

2. (1 point) Based on your answer to (1), are \mathbf{x} and \mathbf{y} orthogonal? Explain.

Solution: No. Their dot product is nonzero.
3. (1 point) If $\mathbf{z} \in \mathbb{R}^{3}$ is such that $\mathbf{z} \cdot \mathbf{x}=4$ and $\mathbf{z} \cdot \mathbf{y}=3$, what is $\mathbf{z} \cdot(5 \mathbf{x}+2 \mathbf{y})$?

Solution: By the linearity of the dot product we have

$$
\mathbf{z} \cdot(5 \mathbf{x}+2 \mathbf{y})=5(\mathbf{z} \cdot \mathbf{x})+2(\mathbf{z} \cdot \mathbf{y})=5(4)+2(3)=23
$$

4. (2 points) What is the distance between \mathbf{x} and \mathbf{y} ?

Solution: The distance between vectors, is by definition, given by

$$
\|\mathbf{x}-\mathbf{y}\|=\sqrt{(1-0)^{2}+(2-3)^{2}+(-3-(-1))^{2}}=\sqrt{6}
$$

5. (2 points) Find a unit vector which points in the same direction as $\mathbf{x}-2 \mathbf{y}$.

Solution: Let $\mathbf{v}=\mathbf{x}-2 \mathbf{y}=\left[\begin{array}{r}1 \\ -4 \\ -1\end{array}\right]$. To get a unit vector in this direction, we rescale by $1 /\|\mathbf{v}\|$:

$$
\frac{1}{\|\mathbf{v}\|}\left[\begin{array}{r}
1 \\
-4 \\
1
\end{array}\right]=\frac{1}{\sqrt{18}}\left[\begin{array}{r}
1 \\
-4 \\
1
\end{array}\right]
$$

6. (3 points) Let $\mathbf{u}=\left[\begin{array}{l}a \\ b \\ 3\end{array}\right]$. If \mathbf{u} is orthogonal to both \mathbf{x} and \mathbf{y}, what are a and b ?

Solution: From the relations $\mathbf{u} \cdot \mathbf{x}=\mathbf{u} \cdot \mathbf{y}=0$, we obtain a system of equations

$$
\begin{aligned}
a+2 b-9 & =\mathbf{u} \cdot \mathbf{x}=0 \\
3 b-3 & =\mathbf{u} \cdot \mathbf{y}=0
\end{aligned}
$$

And it's thus clear that $b=1$ and $a=7$.

