Math 310 (33886), Spring 2016 Instructor: Chris Skalit Quiz 11

Name: _____ UIN: _____

1. (2 points) Suppose that \mathbf{a}_1 , \mathbf{a}_2 , and \mathbf{a}_3 is an orthogonal basis for \mathbb{R}^3 such that $||\mathbf{a}_1|| = 1$, $||\mathbf{a}_2|| = 2$, and $||\mathbf{a}_3|| = 3$. Let $\mathbf{x} = c_1\mathbf{a}_1 + c_2\mathbf{a}_2 + c_3\mathbf{a}_3$. Compute each scalar c_i provided that $\mathbf{x} \cdot \mathbf{a}_i = 1$ for all $1 \le i \le 3$.

Solution: Since $\mathbf{a}_i \cdot \mathbf{a}_j = 0$ for $i \neq j$, we see that

$$\mathbf{a}_i \cdot \mathbf{x} = \mathbf{a}_i \cdot (c_1 \mathbf{a}_1 + c_2 \mathbf{a}_2 + c_3 \mathbf{a}_3) = c_i (\mathbf{a}_i \cdot \mathbf{a}_i) \Rightarrow c_i = \frac{\mathbf{a}_i \cdot \mathbf{x}}{||\mathbf{a}_i||^2}$$

Hence, $c_1 = 1, c_2 = 1/4, c_3 = 1/9$.

2. Consider the two-dimensional subspace V of \mathbb{R}^3 that is cut out by $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix}$. Note that these vectors are orthogonal.

(a) (3 points) Let $\mathbf{y} = \begin{bmatrix} 2\\ -6\\ 4 \end{bmatrix}$. Compute the orthogonal projection $\operatorname{proj}_V(\mathbf{y})$.

Solution:

$$\operatorname{proj}_{V}(\mathbf{y}) = \frac{\mathbf{y} \cdot \mathbf{v}_{1}}{||\mathbf{v}_{1}||^{2}} \mathbf{v}_{1} + \frac{\mathbf{y} \cdot \mathbf{v}_{2}}{||\mathbf{v}_{2}||^{2}} \mathbf{v}_{2} = \left(\frac{10}{5}\right) \begin{bmatrix} 1\\0\\2 \end{bmatrix} + \left(\frac{6}{6}\right) \begin{bmatrix} 2\\-1\\-1 \end{bmatrix} = \begin{bmatrix} 4\\-1\\3 \end{bmatrix}$$

(b) (2 points) What is the distance from \mathbf{y} to V (i.e. the distance from \mathbf{y} to the point in V nearest to \mathbf{y})?

Solution: The shortest distance is the so-called "perpendicular distance" which is given by

$$||\mathbf{y} - \operatorname{proj}_{V}(\mathbf{y})|| = || \begin{bmatrix} 2\\-6\\4 \end{bmatrix} - \begin{bmatrix} 4\\-1\\3 \end{bmatrix} || = \sqrt{30}.$$

3. (3 points) Let W be spanned by the linearly independent vectors $\mathbf{w}_1 = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$ and

$$\mathbf{w}_2 = \begin{bmatrix} 2\\5\\0\\-1 \end{bmatrix}$$
. Use Gram-Schmidt to obtain an orthogonal basis for W .

Solution: We take as our first member of our orthogonal basis $\mathbf{u}_1 = \mathbf{w}_1 = \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix}$. We let $U_1 = \operatorname{span} \{\mathbf{u}_1\}$. Next,

$$\mathbf{u}_{2} = \mathbf{w}_{2} - \operatorname{proj}_{U_{1}}(\mathbf{w}_{2}) = \mathbf{w}_{2} - \frac{\mathbf{w}_{2} \cdot \mathbf{u}_{1}}{||\mathbf{u}_{1}||^{2}} \mathbf{u}_{1} = \mathbf{w}_{2} = \begin{bmatrix} 2\\5\\0\\-1 \end{bmatrix} - \begin{pmatrix} 8\\4 \end{pmatrix} \begin{bmatrix} 1\\1\\1\\-1 \end{bmatrix} = \begin{bmatrix} 0\\3\\-2\\1 \end{bmatrix}.$$