Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 11

Name: \qquad UIN: \qquad

1. (2 points) Suppose that $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} is an orthogonal basis for \mathbb{R}^{3} such that $\left\|\mathbf{a}_{1}\right\|=1$, $\left\|\mathbf{a}_{2}\right\|=2$, and $\left\|\mathbf{a}_{3}\right\|=3$. Let $\mathbf{x}=c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+c_{3} \mathbf{a}_{3}$. Compute each scalar c_{i} provided that $\mathbf{x} \cdot \mathbf{a}_{i}=1$ for all $1 \leq i \leq 3$.

Solution: Since $\mathbf{a}_{i} \cdot \mathbf{a}_{j}=0$ for $i \neq j$, we see that

$$
\mathbf{a}_{i} \cdot \mathbf{x}=\mathbf{a}_{i} \cdot\left(c_{1} \mathbf{a}_{1}+c_{2} \mathbf{a}_{2}+c_{3} \mathbf{a}_{3}\right)=c_{i}\left(\mathbf{a}_{i} \cdot \mathbf{a}_{i}\right) \Rightarrow c_{i}=\frac{\mathbf{a}_{i} \cdot \mathbf{x}}{\left\|\mathbf{a}_{i}\right\|^{2}}
$$

Hence, $c_{1}=1, c_{2}=1 / 4, c_{3}=1 / 9$.
2. Consider the two-dimensional subspace V of \mathbb{R}^{3} that is cut out by $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{r}2 \\ -1 \\ -1\end{array}\right]$. Note that these vectors are orthogonal.
(a) (3 points) Let $\mathbf{y}=\left[\begin{array}{r}2 \\ -6 \\ 4\end{array}\right]$. Compute the orthogonal projection $\operatorname{proj}_{V}(\mathbf{y})$.

Solution:

$$
\operatorname{proj}_{V}(\mathbf{y})=\frac{\mathbf{y} \cdot \mathbf{v}_{1}}{\left\|\mathbf{v}_{1}\right\|^{2}} \mathbf{v}_{1}+\frac{\mathbf{y} \cdot \mathbf{v}_{2}}{\left\|\mathbf{v}_{2}\right\|^{2}} \mathbf{v}_{2}=\left(\frac{10}{5}\right)\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]+\left(\frac{6}{6}\right)\left[\begin{array}{r}
2 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1 \\
3
\end{array}\right]
$$

(b) (2 points) What is the distance from \mathbf{y} to V (i.e. the distance from \mathbf{y} to the point in V nearest to $\mathbf{y})$?
Solution: The shortest distance is the so-called "perpendicular distance" which is given by

$$
\left\|\mathbf{y}-\operatorname{proj}_{V}(\mathbf{y})\right\|=\left\|\left[\begin{array}{r}
2 \\
-6 \\
4
\end{array}\right]-\left[\begin{array}{r}
4 \\
-1 \\
3
\end{array}\right]\right\|=\sqrt{30}
$$

3. (3 points) Let W be spanned by the linearly independent vectors $\mathbf{w}_{1}=\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right]$ and $\mathbf{w}_{2}=\left[\begin{array}{r}2 \\ 5 \\ 0 \\ -1\end{array}\right]$. Use Gram-Schmidt to obtain an orthogonal basis for W.

Solution: We take as our first member of our orthogonal basis $\mathbf{u}_{1}=\mathbf{w}_{1}=\left[\begin{array}{r}1 \\ 1 \\ 1 \\ -1\end{array}\right]$. We let $U_{1}=\operatorname{span}\left\{\mathbf{u}_{1}\right\}$. Next,

$$
\mathbf{u}_{2}=\mathbf{w}_{2}-\operatorname{proj}_{U_{1}}\left(\mathbf{w}_{2}\right)=\mathbf{w}_{2}-\frac{\mathbf{w}_{2} \cdot \mathbf{u}_{1}}{\left\|\mathbf{u}_{1}\right\|^{2}} \mathbf{u}_{1}=\mathbf{w}_{2}=\left[\begin{array}{r}
2 \\
5 \\
0 \\
-1
\end{array}\right]-\left(\frac{8}{4}\right)\left[\begin{array}{r}
1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
0 \\
3 \\
-2 \\
1
\end{array}\right] .
$$

