Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 12

Name: \qquad UIN: \qquad

1. (5 points) Use the method of least squares to find the best-fit line $y=a_{0}+a_{1} x$ for the points $\left[\begin{array}{l}0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 4\end{array}\right] \in \mathbb{R}^{2}$.

Solution: If it were true that every point were contained on $y=a_{0}+a_{1} x$, then we would have equations

$$
\begin{aligned}
& 0=a_{0}+a_{1}(0) \\
& 1=a_{0}+a_{1}(1) \\
& 4=a_{0}+a_{1}(2)
\end{aligned}
$$

We can encode this as $M \mathbf{x}=\mathbf{y}$ where $M=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$, $\mathbf{x}=\left[\begin{array}{l}a_{0} \\ a_{1}\end{array}\right], \mathbf{y}=\left[\begin{array}{l}0 \\ 1 \\ 4\end{array}\right]$. This equation does not have a solution. We instead compute the least-squares solution - that is, a solution to $M^{T} M \mathbf{x}=M^{T} \mathbf{y}$:

$$
\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1}
\end{array}\right]=\left[\begin{array}{l}
5 \\
9
\end{array}\right] \Rightarrow a_{0}=-1 / 3, a_{1}=2
$$

Hence, the best-fit line is $y=(-1 / 3)+2 x$.
2. (5 points) Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$. Orthogonally diagonalize A : that is, find an orthogonal matrix P such that $A=P D P^{T}$ where D is diagonal.

Solution: The characteristic polynomial is $P(t)=\operatorname{det}(A-t A)=(1-t)^{2}-4$, so our eigenvalues are -1 and 3 . Our eigenspaces are

$$
\begin{aligned}
& E_{(-1)}=\operatorname{Nul}(A+I)=\operatorname{Nul}\left(\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{r}
-1 \\
1
\end{array}\right]\right\} \\
& E_{3}=\operatorname{Nul}(A-3 I)=\operatorname{Nul}\left(\left[\begin{array}{rr}
-2 & 2 \\
2 & -2
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]\right)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

Our eigenvectors are already orthogonal to each other; we need to renormalize them to get an orthonormal basis for \mathbb{R}^{2} :

$$
\mathbf{v}_{(-1)}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]=\left[\begin{array}{r}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

$$
\mathbf{v}_{3}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]
$$

We put $P=\left[\begin{array}{rr}-1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right]$ and $D=\left[\begin{array}{rr}-1 & 0 \\ 0 & 3\end{array}\right]$, so

$$
A=P D P^{T}=\left[\begin{array}{rl}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{rr}
-1 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{rl}
-1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

