Math 310 (33886), Fall 2016
 Instructor: Chris Skalit Quiz 2

Name: \qquad UIN: \qquad

1. Compute the product or state that it is not defined.
(a) (1 point) $\left[\begin{array}{rrr}1 & 2 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{r}1 \\ -2 \\ 0\end{array}\right]$.

Solution:

$$
\left[\begin{array}{rrr}
1 & 2 & -1 \\
2 & 3 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{r}
1 \\
-2 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right]-2\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right]+0\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
-3 \\
-4 \\
-2
\end{array}\right]
$$

(b) (1 point) $\left[\begin{array}{ll}1 & 2 \\ 1 & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$

Solution: This product is not defined; the matrix has two columns while the vector has three entries.
2. (4 points) Let $\mathbf{v}=\left[\begin{array}{r}-1 \\ 4 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}2 \\ 2 \\ 3\end{array}\right]$ show that $\mathbf{y}=\left[\begin{array}{r}-1 \\ 14 \\ 6\end{array}\right]$ belongs to $\operatorname{span}\{\mathbf{v}, \mathbf{w}\}$ by finding scalars $\lambda_{i} \in \mathbb{R}$ such that

$$
\mathbf{y}=\lambda_{1} \mathbf{v}+\lambda_{2} \mathbf{w}
$$

Solution: We are being asked to solve the system

$$
\lambda_{1}\left[\begin{array}{r}
-1 \\
4 \\
1
\end{array}\right]+\lambda_{2}\left[\begin{array}{l}
2 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{r}
-1 \\
14 \\
6
\end{array}\right]
$$

or, equivalently, the matrix equation

$$
\left[\begin{array}{rr}
-1 & 2 \\
4 & 2 \\
1 & 3
\end{array}\right]\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{2}
\end{array}\right]=\left[\begin{array}{r}
-1 \\
14 \\
6
\end{array}\right]
$$

Since $\left[\begin{array}{rrr}-1 & 2 & -1 \\ 4 & 2 & 14 \\ 1 & 3 & 6\end{array}\right]$ row-reduces to $\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$, we see that $\lambda_{1}=3, \lambda_{2}=1$. Hence \mathbf{y} may be written as a linear combination of \mathbf{v} and \mathbf{w}.
3. Note: This question requires virtually no computation if done correctly.
(a) (2 points) Let $A=\left[\begin{array}{rrrr}1 & 2 & 0 & 1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$. Write down all solutions $\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ to the homogeneous equation $A \mathbf{x}=\mathbf{0}$.
Solution: Our pivots occur in columns 1 and 3 , so x_{1} and x_{3} are our dependent variables; the others are free. From the relations

$$
\begin{aligned}
x_{1}+2 x_{2}+x_{4} & =0 \Leftrightarrow x_{1}=-2 x_{2}-x_{4} \\
x_{3}-x_{4} & =0 \Leftrightarrow x_{3}=x_{4}
\end{aligned}
$$

Our solutions are

$$
\mathcal{S}=\left\{\left[\begin{array}{c}
-2 x_{2}-x_{4} \\
x_{2} \\
x_{4} \\
x_{4}
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}=\left\{x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

(b) (1 point) Given $\mathbf{b}=\left[\begin{array}{r}1 \\ -1 \\ 0\end{array}\right]$, find all solutions to $A \mathbf{x}=\mathbf{b}$ by using your solution to part (a) and noting that $\mathbf{x}_{p}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 0\end{array}\right]$ is a solution.
Solution: We know that all solutions \mathbf{y} to this equation may be written as $\mathbf{y}=$ $\mathbf{x}_{p}+\mathbf{z}$ where \mathbf{z} is some solution to $A \mathbf{x}=\mathbf{0}$. Hence, from our answer in the previous part, our solution set looks like

$$
\mathcal{S}=\left\{\left[\begin{array}{r}
1 \\
0 \\
-1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{r}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{r}
-1 \\
0 \\
1 \\
1
\end{array}\right]: x_{2}, x_{4} \in \mathbb{R}\right\}
$$

(c) (1 point) Do the columns of A span \mathbb{R}^{3} ? (In other words, is the equation $A \mathbf{x}=\mathbf{h}$ solvable for every choice of $\mathbf{h} \in \mathbb{R}^{3}$?) Explain in one sentence.
Solution: No. The reduced row-echelon form of A does not contain a pivot in every row.

