Math 310 (33886), Fall 2016 Instructor: Chris Skalit Quiz 3

Name: _____ UIN: _____
1. (a) (4 points) Let
$$A = \begin{bmatrix} 2 & 0 & 4 \\ -2 & 1 & -3 \\ 1 & 1 & 3 \end{bmatrix}$$
 Find rref(A).
Solution:
 $\begin{bmatrix} 2 & 0 & 4 \\ -2 & 1 & -3 \\ 1 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ -2 & 1 & -3 \\ 1 & 1 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix}$
(b) (1 point) Based on your answer to part (a), are the vectors $\mathbf{v}_1 = \begin{bmatrix} 2 \\ -2 \\ 1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$,
and $\mathbf{v}_3 = \begin{bmatrix} 4 \\ -3 \\ 3 \end{bmatrix}$ linearly independent? Explain in one sentence.
Solution: These vectors, which are the columns of A , are not linearly independent
because rref(A) does not have a pivot in each column.

2. (2 points) Suppose that $S : \mathbb{R}^2 \to \mathbb{R}^3$ is linear and that $S\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} 2x - y \\ x + y \\ 4x \end{bmatrix}$. Write down the matrix B such that $S(\mathbf{v}) = B\mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^2$.

Solution: We have
$$S\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}2\\1\\4\end{bmatrix}$$
 and $S\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}-1\\1\\0\end{bmatrix}$, so $B = \begin{bmatrix}2 & -1\\1 & 1\\4 & 0\end{bmatrix}$

- 3. Consider the vectors $\mathbf{w}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{w}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ in \mathbb{R}^2 . Suppose that $T : \mathbb{R}^2 \to \mathbb{R}$ is a linear transformation such that $T(\mathbf{w}_1) = 2$ and $T(\mathbf{w}_2) = 3$.
 - (a) (2 points) Write ⁴₃ as a linear combination of w₁ and w₂.
 Solution: We solve the system α ¹₀ + β ¹₁ = ⁴₃ and find that α = 1, β = 3.
 (b) (1 point) Using your answer to part (a), compute T (⁴₃).

Solution: From part (a), we have that $\begin{bmatrix} 4 \\ 3 \end{bmatrix} = \mathbf{w}_1 + 3\mathbf{w}_2$, and so

$$T\left(\begin{bmatrix}4\\3\end{bmatrix}\right) = T(\mathbf{w}_1 + 3\mathbf{w}_2) = T(\mathbf{w}_1) + 3T(\mathbf{w}_2) = 11.$$