Math 310 (33886), Fall 2016

Instructor: Chris Skalit

Quiz 3

Name: \qquad UIN: \qquad

1. (a) (4 points) Let $A=\left[\begin{array}{rrr}2 & 0 & 4 \\ -2 & 1 & -3 \\ 1 & 1 & 3\end{array}\right]$ Find $\operatorname{rref}(A)$.

Solution:

$$
\left[\begin{array}{rrr}
2 & 0 & 4 \\
-2 & 1 & -3 \\
1 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 2 \\
-2 & 1 & -3 \\
1 & 1 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

(b) (1 point) Based on your answer to part (a), are the vectors $\mathbf{v}_{1}=\left[\begin{array}{r}2 \\ -2 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$, and $\mathbf{v}_{3}=\left[\begin{array}{r}4 \\ -3 \\ 3\end{array}\right]$ linearly independent? Explain in one sentence.
Solution: These vectors, which are the columns of A, are not linearly independent because $\operatorname{rref}(A)$ does not have a pivot in each column.
2. (2 points) Suppose that $S: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is linear and that $S\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=\left[\begin{array}{c}2 x-y \\ x+y \\ 4 x\end{array}\right]$. Write down the matrix B such that $S(\mathbf{v})=B \mathbf{v}$ for all vectors $\mathbf{v} \in \mathbb{R}^{2}$.

Solution: We have $S\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 1 \\ 4\end{array}\right]$ and $S\left(\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, so $B=\left[\begin{array}{rr}2 & -1 \\ 1 & 1 \\ 4 & 0\end{array}\right]$
3. Consider the vectors $\mathbf{w}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{w}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in \mathbb{R}^{2}. Suppose that $T: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a linear transformation such that $T\left(\mathbf{w}_{1}\right)=2$ and $T\left(\mathbf{w}_{2}\right)=3$.
(a) (2 points) Write $\left[\begin{array}{l}4 \\ 3\end{array}\right]$ as a linear combination of \mathbf{w}_{1} and \mathbf{w}_{2}.

Solution: We solve the system $\alpha\left[\begin{array}{l}1 \\ 0\end{array}\right]+\beta\left[\begin{array}{l}1 \\ 1\end{array}\right]=\left[\begin{array}{l}4 \\ 3\end{array}\right]$ and find that $\alpha=1, \beta=3$.
(b) (1 point) Using your answer to part (a), compute $T\left(\left[\begin{array}{l}4 \\ 3\end{array}\right]\right)$.

Solution: From part (a), we have that $\left[\begin{array}{l}4 \\ 3\end{array}\right]=\mathbf{w}_{1}+3 \mathbf{w}_{2}$, and so

$$
T\left(\left[\begin{array}{l}
4 \\
3
\end{array}\right]\right)=T\left(\mathbf{w}_{1}+3 \mathbf{w}_{2}\right)=T\left(\mathbf{w}_{1}\right)+3 T\left(\mathbf{w}_{2}\right)=11
$$

