Math 310 (33886), Fall 2016
 Instructor: Chris Skalit
 Quiz 4

Name: \qquad UIN: \qquad

1. Compute the product (or say that the product doesn't exist):
(a) (1 point) $\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$

Solution: Undefined. The left matrix has 3 columns while the one of the right has only 2 rows.
(b) (1 point) $\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]\left[\begin{array}{rrr}1 & 1 & -1 \\ 0 & 1 & 1\end{array}\right]$

Solution:

$$
\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & -1 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

2. Let $A=\left[\begin{array}{rrr}-1 & -1 & 1 \\ 2 & 1 & 0 \\ -2 & -1 & 1\end{array}\right]$
(a) (5 points) Compute A^{-1}.

Solution: To find the inverse, we construct the 3×6 matrix $B=\left[\begin{array}{rrrrrr}-1 & -1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -2 & -1 & 1 & 0 & 0 & 1\end{array}\right]$, which is comprised of the matrix A on the left and the 3×3 identity on the right. We compute

$$
\operatorname{rref}\left(\left[\begin{array}{rrrrrr}
-1 & -1 & 1 & 1 & 0 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-2 & -1 & 1 & 0 & 0 & 1
\end{array}\right]\right)=\left[\begin{array}{rrrrrr}
1 & 0 & 0 & 1 & 0 & -1 \\
0 & 1 & 0 & -2 & 1 & 2 \\
0 & 0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

By reading off the right-hand side of this matrix, we see that $A^{-1}=\left[\begin{array}{rrr}1 & 0 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 1\end{array}\right]$.
(b) (1 point) Using your answer to (a), find the solution to $A \mathbf{x}=\mathbf{b}$ where $\mathbf{b}=\left[\begin{array}{l}2 \\ 1 \\ 1\end{array}\right]$.

Solution: Since A is invertible, we can solve $A \mathbf{x}=\mathbf{b}$ for \mathbf{x} :

$$
A \mathbf{x}=\mathbf{b} \Rightarrow A^{-1}(A \mathbf{x})=A^{-1} \mathbf{b} \Rightarrow \mathbf{x}=A^{-1} \mathbf{b}=\left[\begin{array}{rrr}
1 & 0 & -1 \\
-2 & 1 & 2 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1 \\
2
\end{array}\right]
$$

3. Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}$ be the linear transformation defined by $T(\mathbf{x})=B \mathbf{x}$ for $B=\left[\begin{array}{llll}1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
(a) (1 point) Is T surjective (onto)? Explain in one sentence.

Solution: Yes. Each row of rref B has a pivot.
(b) (1 point) is T injective (one-to-one)? Explain in one sentence.

Solution: No. Not every column of ref B has a pivot.

