Math 310 (33886), Fall 2016 Instructor: Chris Skalit Quiz 4

Name:	UIN:
1. Comp	pute the product (or say that the product doesn't exist):
(a) ((1 point) $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$
S (Solution: Undefined. The left matrix has 3 columns while the one of the right has only 2 rows.
(b) ((1 point) $\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix}$
S	Solution: $ \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 3 & 1 \\ 0 & 1 & 1 \end{bmatrix} $
2. Let A	$\mathbf{A} = \begin{bmatrix} -1 & -1 & 1\\ 2 & 1 & 0\\ -2 & -1 & 1 \end{bmatrix}$
(a) ((5 points) Compute A^{-1} .
r T	Solution: To find the inverse, we construct the 3×6 matrix $B = \begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 0 & 1 & 0 \\ -2 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$, which is comprised of the matrix A on the left and the 3×3 identity on the right.
	$\operatorname{rref}\left(\begin{bmatrix} -1 & -1 & 1 & 1 & 0 & 0\\ 2 & 1 & 0 & 0 & 1 & 0\\ -2 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & -1\\ 0 & 1 & 0 & -2 & 1 & 2\\ 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$

By reading off the right-hand side of this matrix, we see that $A^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix}$.

(b) (1 point) Using your answer to (a), find the solution to $A\mathbf{x} = \mathbf{b}$ where $\mathbf{b} = \begin{bmatrix} 2\\1\\1 \end{bmatrix}$. Solution: Since A is invertible, we can solve $A\mathbf{x} = \mathbf{b}$ for \mathbf{x} :

$$A\mathbf{x} = \mathbf{b} \Rightarrow A^{-1}(A\mathbf{x}) = A^{-1}\mathbf{b} \Rightarrow \mathbf{x} = A^{-1}\mathbf{b} = \begin{bmatrix} 1 & 0 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

3. Let $T : \mathbb{R}^4 \to \mathbb{R}^3$ be the linear transformation defined by $T(\mathbf{x}) = B\mathbf{x}$ for $B = \begin{bmatrix} 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

(a) (1 point) Is T surjective (onto)? Explain in one sentence.Solution: Yes. Each row of rref B has a pivot.

(b) (1 point) is T injective (one-to-one)? Explain in one sentence.Solution: No. Not every column of rref B has a pivot.