Math 310 (33886), Fall 2016
 Instructor: Chris Skalit Quiz 5

Name: \qquad UIN: \qquad

1. (6 points) Let $A=\left[\begin{array}{lll}1 & -2 & 0 \\ 3 & -3 & 0 \\ 2 & -7 & 1\end{array}\right]$. Find an upper-triangular matrix U and a lowertriangular L such that $A=L U$.

Solution: To find U, we put A into row-echelon form, using only operations which add a multiple of one row to another below it:

$$
\left[\begin{array}{lll}
1 & -2 & 0 \\
3 & -3 & 0 \\
2 & -7 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 3 & 0 \\
2 & -7 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 3 & 0 \\
0 & -3 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & -2 & 0 \\
0 & 3 & 0 \\
0 & 0 & 1
\end{array}\right]=U
$$

To obtain U, we performed the following operations:

1. Add (-3)R1 to R2
2. Add (-2)R1 to R3
3. Add $(+1) R 2$ to R3

To obtain L, we start with the identity matrix and perform the inverse of these operations in the reverse order:

1. Add $(-1) \mathrm{R} 2$ to R3
2. Add $(+2)$ R1 to R3
3. Add (+3)R1 to R2

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{rrr}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & -1 & 1
\end{array}\right]=L
$$

2. Let $B=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 2 & 3\end{array}\right]$.
(a) (2 points) Compute $\operatorname{det} B$.

Solution: By cofactor expansion along the top row, we have

$$
\operatorname{det} B=2(1 \cdot 3-1 \cdot 2)+1(1 \cdot 2-1 \cdot 0)=4
$$

(b) (2 points) Suppose that $\mathbf{y}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ where $a, b, c \in \mathbb{R}$. Find the unique $\mathbf{x} \in \mathbb{R}^{3}$ such that $B \mathbf{x}=\mathbf{y}$ by using Cramer's Rule and the fact that

$$
\operatorname{det}\left(\left[\begin{array}{lll}
a & 0 & 1 \\
b & 1 & 1 \\
c & 2 & 3
\end{array}\right]\right)=3 \quad \operatorname{det}\left(\left[\begin{array}{lll}
2 & a & 1 \\
1 & b & 1 \\
0 & c & 3
\end{array}\right]\right)=5 \quad \operatorname{det}\left(\left[\begin{array}{lll}
2 & 0 & a \\
1 & 1 & b \\
0 & 2 & c
\end{array}\right]\right)=8
$$

Solution: If we denote by $B_{i}(\mathbf{y})$ the matrix obtained by replacing the i-th column of B with \mathbf{y}, then Cramer's Rule says that $x_{i}=\frac{\operatorname{det} B_{i}(\mathbf{y})}{\operatorname{det} B}$. Hence,

$$
x_{1}=\frac{3}{4} \quad x_{2}=\frac{5}{4} \quad x_{3}=\frac{8}{4}
$$

