Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 6

Name: \qquad UIN: \qquad

1. Let $A=\left[\begin{array}{rrrrr}-3 & -9 & 3 & 0 & 0 \\ 2 & 6 & -2 & 3 & -6 \\ 1 & 3 & -1 & 1 & -2\end{array}\right]$ and $B=\left[\begin{array}{rrrrr}1 & 3 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$. Note that $B=\operatorname{rref}(A)$.
(a) (2 points) Write down a basis for the column space, $\operatorname{Col} A$.

Solution: We can extract a basis for $\operatorname{Col} A$ by simply including those vectors whose corresponding columns in rref A have pivots:

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
-3 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
3 \\
1
\end{array}\right]\right\}
$$

(b) (3 points) Write down a basis for the nullspace, $\operatorname{Nul}(A)$.

Solution: Nul A is just the solution set to $B \mathbf{x}=\mathbf{0}$, whence we obtain the relations

$$
\begin{aligned}
x_{1}+3 x_{2}-x_{3} & =0 \\
x_{4}-2 x_{5} & =0
\end{aligned}
$$

with x_{2}, x_{3}, x_{5} free. If we write the solutions in vector-parametric form, we get
$\mathrm{Nul}=\left\{\left[\begin{array}{r}-3 x_{2}+x_{3} \\ x_{2} \\ x_{3} \\ 2 x_{5} \\ x_{5}\end{array}\right]: x_{2}, x_{3}, x_{5} \in \mathbb{R}\right\}=\left\{x_{2}\left[\begin{array}{r}-3 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{5}\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 2 \\ 1\end{array}\right]: x_{2}, x_{3}, x_{5} \in \mathbb{R}\right\}$.
These vectors are linearly independent, so our basis is

$$
\mathcal{B}=\left\{\left[\begin{array}{r}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
2 \\
1
\end{array}\right]\right\}
$$

2. (3 points) Consider the space of linear polynomials \mathcal{P}_{1}. Let $T: \mathcal{P}_{1} \rightarrow \mathbb{R}$ be the linear transformation defined by

$$
T(f)=\int_{2}^{4} f(t) d t
$$

If $f(x)=a x+b \in \mathcal{P}_{1}$ and $f \in \operatorname{ker}(T)$, then necessarily, $a=k b$ for some $k \in \mathbb{R}$. What is this value of k ?

Solution: We have $f(x)=a x+b$. The condition that $f \in \operatorname{ker}(T)$ means precisely that

$$
\begin{aligned}
0 & =T(f) \\
& =\int_{2}^{4}(a t+b) d t \\
& =\frac{a}{2} t^{2}+\left.b t\right|_{2} ^{4} \\
& =6 a+2 b
\end{aligned}
$$

Thus, when we solve for a, we get $a=-\frac{1}{3} b$.
3. (2 points) Let $W=\left\{\left[\begin{array}{l}x \\ y\end{array}\right]: x^{2}-y=0\right\}$. Show that W is not a subspace of \mathbb{R}^{2} by finding $\mathbf{v}, \mathbf{w} \in W$ such that $\mathbf{v}+\mathbf{w} \notin W$.

Solution: We can take $\mathbf{v}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $\mathbf{w}=\left[\begin{array}{l}2 \\ 4\end{array}\right]$. Note that $\mathbf{v}+\mathbf{w}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$, but $5 \neq(3)^{2}$; hence $\mathbf{v}+\mathbf{w} \notin W$.

