Math 310 (33886), Spring 2016
 Instructor: Chris Skalit Quiz 7

Name: \qquad UIN: \qquad

1. State the dimensions of the following spaces:
(a) (1 point) The space \mathbb{P}_{2} of all real polynomial functions having degree at most two.

Solution: This space has a basis consisting of the polynomials $\left\{1, t, t^{2}\right\}$, so $\operatorname{dim} \mathbb{P}_{2}=$ 3.
(b) (1 point) The column space of a 3×4 matrix A with $\operatorname{dim}(\operatorname{Nul} A)=2$.

Solution: This matrix has 4 columns, so by the rank-nullity theorem, $\operatorname{dim}(\operatorname{Nul} A)+$ $\operatorname{dim}(\operatorname{Col} A)=4 ;$ hence $\operatorname{dim}(\operatorname{Nul} A)=2$.
(c) (1 point) The row space of a 9×9 matrix B such that $\operatorname{dim}(\operatorname{Col} B)=7$.

Solution: The row space and column space of a matrix have the same dimension, so $\operatorname{dim}($ row $A)=7$.
(d) (1 point) The nullspace of a 4×3 matrix C whose columns are linearly independent.

Solution: Recall that a matrix has linearly independent columns if and only if its nullspace consists only of $\mathbf{0}$. Hence, $\operatorname{dim}(\operatorname{Nul} C)=0$.
2. Let V be the subspace of \mathbb{R}^{4} having basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}, \mathbf{b}_{3}\right\}$ where

$$
\mathbf{b}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1 \\
1
\end{array}\right] \quad \mathbf{b}_{2}=\left[\begin{array}{r}
-2 \\
1 \\
1 \\
1
\end{array}\right] \quad \mathbf{b}_{3}=\left[\begin{array}{r}
-1 \\
1 \\
1 \\
0
\end{array}\right]
$$

(a) (2 points) If $\mathbf{v} \in V$ has coordinates $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right]$, what is \mathbf{v} ?

Solution: The above coordinate representation means precisely that

$$
\mathbf{v}=(-1) \mathbf{b}_{1}+0 \cdot \mathbf{b}_{2}+2 \mathbf{b}_{3}=\left[\begin{array}{r}
-3 \\
2 \\
1 \\
-1
\end{array}\right]
$$

(b) (4 points) Let $\mathbf{w}=\left[\begin{array}{r}-6 \\ 5 \\ 6 \\ 3\end{array}\right]$. Find $[\mathbf{w}]_{\mathcal{B}}$.

Solution: By definition $[\mathbf{w}]_{\mathcal{B}}=\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]$ where the c_{i} satisfy the equation

$$
\mathbf{w}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}+c_{3} \mathbf{b}_{3} .
$$

Thus, we must solve the equation

$$
\left[\begin{array}{rrr}
1 & -2 & -1 \\
0 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=\left[\begin{array}{r}
-6 \\
5 \\
6 \\
3
\end{array}\right]
$$

whence we find that $c_{1}=1, c_{2}=2$, and $c_{3}=3$.

