Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 8

Name: \qquad UIN: \qquad

1. Suppose that V is a two-dimensional vector space with bases $\mathcal{A}=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ and $\mathcal{B}=\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ such that

$$
\mathbf{a}_{1}=\mathbf{b}_{1}+5 \mathbf{b}_{2} \quad \mathbf{a}_{2}=\mathbf{b}_{1}+6 \mathbf{b}_{2} .
$$

(a) (1 point) Write down the change of basis matrix $P_{\mathcal{B} \leftarrow \mathcal{A}}$ which converts \mathcal{A}-coordinates to \mathcal{B}-coordinates.

Solution:

$$
P_{\mathcal{B} \leftarrow \mathcal{A}}=\left[\left[\mathbf{a}_{1}\right]_{\mathcal{B}}\left[\mathbf{a}_{2}\right]_{\mathcal{B}}\right]=\left[\begin{array}{ll}
1 & 1 \\
5 & 6
\end{array}\right]
$$

(b) (2 points) Write down the change of basis matrix $P_{\mathcal{A} \leftarrow \mathcal{B}}$ which converts \mathcal{B}-coordinates to \mathcal{A}-coordinates.
Solution:

$$
P_{\mathcal{A} \leftarrow \mathcal{B}}=\left(P_{\mathcal{B} \leftarrow \mathcal{A}}\right)^{-1}=\left[\begin{array}{rr}
6 & -1 \\
-5 & 1
\end{array}\right]
$$

(c) (2 points) If $\mathbf{v}=4 \mathbf{b}_{1}-\mathbf{b}_{2}$, write down $[\mathbf{v}]_{\mathcal{A}}$ and $[\mathbf{v}]_{\mathcal{B}}$. (Hint: Use part (b).)

Solution: We have, from inspection, that $[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{r}4 \\ -1\end{array}\right]$. Next we have

$$
[\mathbf{v}]_{\mathcal{A}}=P_{\mathcal{A} \leftarrow \mathcal{B}}[\mathbf{v}]_{\mathcal{B}}=\left[\begin{array}{rr}
6 & -1 \\
-5 & 1
\end{array}\right]\left[\begin{array}{r}
4 \\
-1
\end{array}\right]=\left[\begin{array}{r}
25 \\
-21
\end{array}\right]
$$

2. (3 points) Let $A=\left[\begin{array}{lll}5 & 0 & 0 \\ 0 & 1 & 9 \\ 0 & 1 & 1\end{array}\right]$. Find all eigenvalues of A.

Solution: We compute the characteristic polynomial

$$
\begin{aligned}
& P_{A}(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\left[\begin{array}{ccc}
5-t & 0 & 0 \\
0 & 1-t & 9 \\
0 & 1 & 1-t
\end{array}\right]\right)=(5-t)\left[(1-t)^{2}-9\right]=(5-t)\left[t^{2}-2 t-8\right] \\
& P_{A}(t)=(5-t)(t-4)(t+2)
\end{aligned}
$$

Hence, our eigenvalues are 5,4, and -2 .
3. (2 points) Let $B=\left[\begin{array}{lll}3 & 0 & -2 \\ 1 & 2 & -2 \\ 2 & 0 & -2\end{array}\right]$. Compute the eigenspace E_{2} corresponding to the eigenvalue 2. (You do not need to find the other eigenvalues.)

Solution:

$$
E_{2}=\operatorname{Nul}(B-2 I)=\operatorname{Nul}\left(\left[\begin{array}{lll}
1 & 0 & -2 \\
1 & 0 & -2 \\
2 & 0 & -4
\end{array}\right]\right)
$$

As the nullspace of a matrix coincides with the nullspace of its reduced row-echelon form, we have

$$
\operatorname{Nul}\left(\left[\begin{array}{lll}
1 & 0 & -2 \\
1 & 0 & -2 \\
2 & 0 & -4
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rrr}
1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\right)
$$

Thus, if $\mathbf{x} \in \mathbb{R}^{3}$ satisfies $(B-2 I) \mathbf{x}=\mathbf{0}$, then $x_{1}-2 x_{3}=0$ with x_{2}, x_{3} free. Hence,

$$
E_{2}=\operatorname{Nul}(B-2 I)=\left\{\left[\begin{array}{r}
2 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]: x_{2}, x_{3} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
2 \\
0 \\
1
\end{array}\right]\right\} .
$$

