Math 310 (33886), Spring 2016
 Instructor: Chris Skalit
 Quiz 9

Name: \qquad UIN: \qquad

1. Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$
(a) (1 point) Find all eigenvalues of A

Solution: Our characteristic polynomial is

$$
P_{A}(t)=\operatorname{det}(A-t I)=\operatorname{det}\left(\left[\begin{array}{rr}
1-t & 2 \\
2 & 1-t
\end{array}\right]\right)=(1-t)^{2}-4
$$

Hence, our eigenvalues are 3 and -1 .
(b) (3 points) Compute the eigenspace for each eigenvalue.

Solution: We first compute the 3 -eigenspace:

$$
E_{3}=\operatorname{Nul}(A-3 I)=\operatorname{Nul}\left(\left[\begin{array}{rr}
-2 & 2 \\
2 & -2
\end{array}\right]\right)=\operatorname{Nul}\left(\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]\right)
$$

Now, $\left[\begin{array}{rr}1 & -1 \\ 0 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\mathbf{0}$ if and only if $x_{1}-x_{2}=0$, so

$$
\operatorname{Nul}\left(\left[\begin{array}{rr}
1 & -1 \\
0 & 0
\end{array}\right]\right)=\left\{\left[\begin{array}{l}
x_{2} \\
x_{2}
\end{array}\right]: x_{2} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right]\right\}
$$

Through a similar calculation, we find that the (-1)-eigenspace is

$$
E_{(-1)}=\operatorname{Nul}(A+I)=\operatorname{span}\left\{\left[\begin{array}{r}
1 \\
-1
\end{array}\right]\right\}
$$

(c) (2 points) Using parts (a) and (b), diagonalize A. That is, find matrices S and D where D is diagonal and $A=S D S^{-1}$.
Solution: D is simply the matrix with the eigenvalues of A running down the diagonal: $D=\left[\begin{array}{rr}3 & 0 \\ 0 & -1\end{array}\right]$. The columns of S are merely the eigenvectors of A with the same ordering as their corresponding eigenvalues in $D: S=\left[\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right]$. $S^{-1}=\left[\begin{array}{rr}1 / 2 & 1 / 2 \\ 1 / 2 & -1 / 2\end{array}\right]$
2. Let \mathcal{P}_{2} be the space of polynomials having degree at most 2 . Consider the standard basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$. Suppose that $T: \mathcal{P}_{2} \rightarrow \mathcal{P}_{2}$ is the linear transformation defined via

$$
T(f)=t^{2} \frac{d^{2} f}{d t^{2}}+2 \frac{d f}{d t}
$$

(a) (2 points) Write down the matrix $[T]_{\mathcal{B}}$ for T with respect to the basis \mathcal{B}.

Solution: We need only check what T does to each basis vector:

$$
\begin{gathered}
T(1)=0 \Rightarrow[T(1)]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
T(t)=2 \Rightarrow[T(t)]_{\mathcal{B}}=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right] \\
T\left(t^{2}\right)=4 t+2 t^{2} \Rightarrow\left[T\left(t^{2}\right)\right]_{\mathcal{B}}=\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]
\end{gathered}
$$

And thus, we have $[T]_{\mathcal{B}}=\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 4 \\ 0 & 0 & 2\end{array}\right]$
(b) (2 points) What are the eigenvalues of T ?

Solution: Note that with respect to \mathcal{B}, the matrix for T is triangular. Its characteristic polynomial is $P_{T}(t)=t^{2}(2-t)$, meaning that the eigenvalues are 0 and 2.

