Math 520: Fall 2016 Problem Set 1

- 1. Let $\phi: A \to B$ is a surjective morphism of rings.
 - (a) Produce a bijection between the following sets:

 ${I \subseteq A : I \text{ an ideal, } \ker \phi \subseteq I} \leftrightarrow {J \subseteq B : J \text{ an ideal}}$

- (b) Show that the induced map ϕ^* : Spec $B \to$ Spec A establishes a homeomorphism between Spec B and $V(\ker \phi)$.
- 2. Let $k = \overline{k}$ be a field. Describe all maximal ideals of A = k[X].
- 3. Fix a prime $p \in \mathbb{Z}$. Let $H = \left\{\frac{a}{p^n} \in \mathbb{Q} : a \in \mathbb{Z}, n \ge 0\right\}$, regarded as an Abelian group. Show that H/\mathbb{Z} has no maximal subgroups. Conclude that H is not Noetherian as a \mathbb{Z} -module. (What happens if you try to blindly invoke Zorn's Lemma as in the proof of the existence of maximal ideals?)
- 4. If M is a finitely-generated Abelian group, show that there exists a subgroup N such that $M/N \cong \mathbb{Z}/p\mathbb{Z}$ for some prime p.
- 5. Let R be a ring and let $I \subseteq R$ be an ideal.
 - (a) Show that \sqrt{I} is the intersection of all primes Q containing I. Hint: Think about the nilradical of R/I and use Problem 1.
 - (b) Show that $V(I) = V(\sqrt{I})$.
 - (c) Conclude that if J is another ideal, $V(I) \subseteq V(J)$ if and only if $\sqrt{J} \subseteq \sqrt{I}$.
- 6. When $f \in R$, we typically write D(f) for the complement of V(f) in Spec R. Show that open sets of the form D(f) form a basis for the Zariski topology on Spec R. (Reminder: A basis \mathcal{B} for a topological space X is a family of open sets such that for each open $U \subseteq X$ and each $x \in U$, there is a $B \in \mathcal{B}$ with $x \in B \subseteq U$.)
- 7. Let Q be a prime ideal of R. Use Zorn's Lemma to show that Q contains a minimal prime P.
- 8. Show that if Spec R is not connected, then there exists a decomposition $R = S \times T$.
- 9. (Optional) Use a simple cardinality argument to show that $\prod_{i \in \mathbb{N}} \mathbb{Q}$ does not have a countable set of generators (as a \mathbb{Q} - module).