Math 520: Fall 2016 Problem Set 11

1. Suppose we have a commutative diagram in *R*-mod with exact rows:

- (a) If $y \in \ker \gamma$, take $x \in B$ such that g(x) = y. Show that $\beta(x) = f'(w)$ for some $w \in A'$ and that $y \mapsto \overline{w}$ gives a well-defined morphism $\phi : \ker \gamma \to \operatorname{coker} \alpha$.
- (b) Show that there is an exact sequence

 $0 \to \ker \alpha \to \ker \beta \to \ker \gamma \xrightarrow{\phi} \operatorname{coker} \alpha \to \operatorname{coker} \beta \to \operatorname{coker} \gamma \to 0$

2. Suppose that we have an exact sequence of inverse systems of *R*-modules

$$0 \to \{A_n\} \to \{B_n\} \to \{C_n\} \to 0$$

Assume all inverse systems are indexed over \mathbb{N} .

- (a) Show that the induced sequence on inverse limits is left-exact.
- (b) Show that if the maps in $\{A_n\}$ are all surjective, then the induced sequence on inverse limits is exact. (Use the Snake Lemma from Question 1).
- 3. Let M be an R-module with decreasing filtration $F^n M$. Let $(\overline{x}_n) \in \lim_{\stackrel{\leftarrow}{n}} M/F^n M$ be a coherent sequence.
 - (a) Show that if $x_n \in M$ has residue \overline{x}_n in M/F^nM , then the sequence (x_n) is Cauchy.
 - (b) Show that if $y_n \in M$ is a second lift of \overline{x}_n , then $\lim_{n \to \infty} x_n y_n = 0$.
- 4. A local ring (A, \mathfrak{m}) is called *Hensellian* if it satisfies the following condition: Given a monic polynomial $f \in A[X]$, if there exists a factorization $\overline{f} = \overline{gh}$ in $(A/\mathfrak{m})[X]$ with \overline{g} and \overline{f} coprime, then they lift to a factorization f = gh in A[X]. Show that an \mathfrak{m} -adically complete, Noetherian local ring (A, \mathfrak{m}) is Hensellian.
- 5. Let $\phi : (A, \mathfrak{m}) \to (B, \mathfrak{n})$ be a local homomorphism of local rings. (A local homomorphism means that $\mathfrak{m}B \subset \mathfrak{n}$.) Show that if ϕ is flat then it is faithfully flat. Conclude that if (A, \mathfrak{m}) is a Noetherian local ring then $A \to \hat{A}_{\mathfrak{m}}$ is faithfully flat.
- 6. Suppose that (A, \mathfrak{m}) is a Noetherian local ring and that \hat{A} is the \mathfrak{m} -adic completion. Let R be an arbitrary ring and suppose that $I \subset R$ is an ideal such that $I^2 = 0$. Suppose we have a commutative diagram

where $\phi(\mathfrak{m}^n \hat{A}) = 0$ for some n > 0. Show that there is a map $\hat{A} \to R$ making the diagram commute.

7. Let (A, \mathfrak{m}) be a DVR. Show that $e_{\mathfrak{m}}(A) = 1$.