Math 520: Fall 2016 Problem Set 13

- 1. Let $A \to B$ be a flat ring map. For M and N A-modules, show that $\operatorname{Tor}_i^A(M, N) \otimes_A B \cong \operatorname{Tor}_i^B(M \otimes_A B, N \otimes_A B)$ for all $i \ge 0$.
- 2. Let R be a Dedekind ring. Let M be a finitely-generated module. Show that $pd_R(M) \leq 1$. Hint: Choose a surjection $\mathbb{R}^n \to M$. Show that K is locally-free.
- 3. Let (A, \mathfrak{m}) be a Noetherian local ring with $\mathfrak{m} = (x_1, \dots, x_d)$. Suppose that the x_i form a regular sequence for A. Prove that A is regular (in the sense that the embedding dimension and Krull dimension of A coincide).
- 4. A Noetherian ring R is called regular if for every $\mathfrak{p} \in \operatorname{Spec} R R_{\mathfrak{p}}$ is a regular local ring. Prove that R is a regular ring if and only if every finitely-generated R module M has finite-projective dimension by completing the following outline:
 - (a) If R is Noetherian and M is finitely-generated over $S^{-1}R$, show that there is a finitely-generated R-module M_0 such that $M \cong S^{-1}M_0$. Hint: M is defined by a matrix over $S^{-1}R$. Lift this matrix to R.
 - (b) Assume that every finitely-generated R module has finite projective dimension. Let k be the residue field of some local ring R_p . Deduce that $\mathrm{pd}_{R_p}(k) < \infty$ and conclude that R_p is regular.
 - (c) Now assume that every local ring $R_{\mathfrak{p}}$ is regular. If N is a finitely-generated R-module, take any free resolution $F_{\cdot} \to N \to 0$ with each F_i having finite rank. If $E_i = \ker(P_i \to P_{i-1})$, show that for each $\mathfrak{p}(E_i)_{\mathfrak{p}}$ is free for i >> 0.
 - (d) With the assumptions of part (c), prove the following more precise statement: For each $\mathfrak{p} \in \operatorname{Spec} R$, there exists an integer $j_{\mathfrak{p}} > 0$ such that for all $i > j_{\mathfrak{p}}$, there exists an $0 \neq f_{\mathfrak{p},i} \in R$, such that $(E_i)_{f_{\mathfrak{p},i}}$ is free over $R_{f_{\mathfrak{p},i}}$.
 - (e) Use the quasi-compactness of Spec R to conclude that E_i is locally-free (and hence projective) for i >> 0.
- 5. Let $R \to A$ be a faithfully-flat extension of Noetherian rings. Show that R is regular if A is.
- 6. Give a direct proof that \mathbb{Q} is not projective over \mathbb{Z} .
- 7. Let R be a ring and let M be an R-module. Let $x \in R$ be a non-zerodivisor on M and R. Put $\overline{R} = R/xR$ and $\overline{M} = M/xM$. Show that for all \overline{R} -modules N, $\operatorname{Tor}_{n}^{\overline{R}}(\overline{M}, N) = \operatorname{Tor}_{n}^{R}(M, N)$ for all $n \geq 0$.