Math 520: Fall 2016

Problem Set 13

1. Let $A \rightarrow B$ be a flat ring map. For M and $N A$-modules, show that $\operatorname{Tor}_{i}^{A}(M, N) \otimes_{A} B \cong$ $\operatorname{Tor}_{i}^{B}\left(M \otimes_{A} B, N \otimes_{A} B\right)$ for all $i \geq 0$.
2. Let R be a Dedekind ring. Let M be a finitely-generated module. Show that $\mathrm{pd}_{R}(M) \leq$ 1. Hint: Choose a surjection $R^{n} \rightarrow M$. Show that K is locally-free.
3. Let (A, \mathfrak{m}) be a Noetherian local ring with $\mathfrak{m}=\left(x_{1}, \cdots, x_{d}\right)$. Suppose that the x_{i} form a regular sequence for A. Prove that A is regular (in the sense that the embedding dimension and Krull dimension of A coincide).
4. A Noetherian ring R is called regular if for every $\mathfrak{p} \in \operatorname{Spec} R R_{\mathfrak{p}}$ is a regular local ring. Prove that R is a regular ring if and only if every finitely-generated R module M has finite-projective dimension by completing the following outline:
(a) If R is Noetherian and M is finitely-generated over $S^{-1} R$, show that there is a finitely-generated R-module M_{0} such that $M \cong S^{-1} M_{0}$. Hint: M is defined by a matrix over $S^{-1} R$. Lift this matrix to R.
(b) Assume that every finitely-generated R module has finite projective dimension. Let k be the residue field of some local ring $R_{\mathfrak{p}}$. Deduce that $\operatorname{pd}_{R_{\mathfrak{p}}}(k)<\infty$ and conclude that $R_{\mathfrak{p}}$ is regular.
(c) Now assume that every local ring $R_{\mathfrak{p}}$ is regular. If N is a finitely-generated R module, take any free resolution $F \rightarrow N \rightarrow 0$ with each F_{i} having finite rank. If $E_{i}=\operatorname{ker}\left(P_{i} \rightarrow P_{i-1}\right)$, show that for each $\mathfrak{p}\left(E_{i}\right)_{\mathfrak{p}}$ is free for $i \gg 0$.
(d) With the assumptions of part (c), prove the following more precise statement: For each $\mathfrak{p} \in \operatorname{Spec} R$, there exists an integer $j_{\mathfrak{p}}>0$ such that for all $i>j_{\mathfrak{p}}$, there exists an $0 \neq f_{\mathfrak{p}, i} \in R$, such that $\left(E_{i}\right)_{f_{\mathfrak{p}, i}}$ is free over $R_{f_{\mathfrak{p}, i}}$.
(e) Use the quasi-compactness of $\operatorname{Spec} R$ to conclude that E_{i} is locally-free (and hence projective) for $i \gg 0$.
5. Let $R \rightarrow A$ be a faithfully-flat extension of Noetherian rings. Show that R is regular if A is.
6. Give a direct proof that \mathbb{Q} is not projective over \mathbb{Z}.
7. Let R be a ring and let M be an R-module. Let $x \in R$ be a non-zerodivisor on M and R. Put $\bar{R}=R / x R$ and $\bar{M}=M / x M$. Show that for all \bar{R}-modules N, $\operatorname{Tor}_{n}^{\bar{R}}(\bar{M}, N)=$ $\operatorname{Tor}_{n}^{R}(M, N)$ for all $n \geq 0$.
