Math 520: Fall 2016 Problem Set 2

- 1. Is a subring of a Noetherian ring Noetherian? Give a proof or counterexample.
- 2. Let R be Noetherian and let $I \subseteq R$ be an ideal. Show that $\operatorname{Spec} R/I$ is irreducible if and only if \sqrt{I} is prime.
- 3. Let $f \in R$. Show that $R_f \cong R[X]/(Xf-1)$. Thus, R_f is a finitely-generated R-algebra.
- 4. Let $S \subset T$ be multiplicative subsets of a ring R. Let \tilde{T} be the image of T in $S^{-1}R$. Show that $T^{-1}R \cong \tilde{T}^{-1}(S^{-1}R)$.
- 5. A ring R is called *reduced* if its nilradical is zero. Show that R is reduced if and only if $R_{\mathfrak{p}}$ is reduced for every prime ideal \mathfrak{p} .
- 6. Suppose that every prime ideal of R is maximal. Show that Spec R is a Hausdorff space. Hint: Reduce to the case where R has trivial nilradical. Given primes \mathfrak{p} and \mathfrak{q} , choose $f \in \mathfrak{p} - \mathfrak{q}$, and note that f vanishes in $R_{\mathfrak{p}}$...
- 7. Let A be a Noetherian ring and M a finitely-generated A-module. Show that if $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ module then M_f is free over A_f for some $f \in A$.
- 8. If R is a reduced ring, show that f is a zerodivisor if and only if f is contained in some minimal prime.
- 9. Let A be Noetherian and M a finitely-generated module. Let μ_M : Spec $A \to \mathbb{R}$ be such that $\mu_M(\mathfrak{p}) = \dim(M_\mathfrak{p}/\mathfrak{p}M_\mathfrak{p})$ (where the dimension is being taken over the field $k(\mathfrak{p}) := A_\mathfrak{p}/\mathfrak{p}A_\mathfrak{p}$).
 - (a) Show that μ_M is upper-semicontinuous. That is, for all $\mathfrak{p} \in \operatorname{Spec} A$ and $\epsilon > 0$, there is an open neighborhood $U \subset \operatorname{Spec} A$ of \mathfrak{p} , such that $\mu_M(\mathfrak{q}) \leq \mu_M(\mathfrak{p}) + \epsilon$ for all $\mathfrak{q} \in U$.
 - (b) If A is reduced and μ_M is constant, show that M is locally free (i.e. $M_{\mathfrak{p}}$ is free for all \mathfrak{p}).
 - (c) If A is reduced, show that μ_M is continuous if and only if M is locally free.
- 10. Let A be a Noetherian ring and M a finitely generated module. We define the support of M via Supp $M = \{ \mathfrak{p} \in \text{Spec } A : M_{\mathfrak{p}} \neq 0 \}$. Show the following:
 - (a) Supp $M = V(\operatorname{ann}(M))$ where $\operatorname{ann}(M) = \{a \in A : ax = 0 \text{ for all } x \in M\}.$
 - (b) If $0 \to M' \to M \to M'' \to 0$ is exact, then Supp $M = \text{Supp } M' \cup \text{Supp } M''$.