Math 520: Fall 2016 Problem Set 2

- 1. Is a subring of a Noetherian ring Noetherian? Give a proof or counterexample.
- 2. Let R be Noetherian and let $I \subseteq R$ be an ideal. Show that $\operatorname{Spec} R/I$ is irreducible if and only if \sqrt{I} is prime.
- 3. Let $f \in R$. Show that $R_f \cong R[X]/(Xf-1)$. Thus, R_f is a finitely-generated R-algebra.

Solution: Since the natural map $R \to R[X]/(Xf-1)$ maps f to a unit, the universal property of localization gives an extension $\phi : R_f \to R[X]/(Xf-1)$. By mapping X to $1/f \in R_f$, we have a map $R[X] \to R_f$ whose kernel contains Xf - 1, thereby producing an induced map $\psi : R[X]/(Xf-1) \to R_f$. Checking that $\phi\psi$ and $\psi\phi$ are the identity is routine.

- 4. Let $S \subset T$ be multiplicative subsets of a ring R. Let \tilde{T} be the image of T in $S^{-1}R$. Show that $T^{-1}R \cong \tilde{T}^{-1}(S^{-1}R)$.
- 5. A ring R is called *reduced* if its nilradical is zero. Show that R is reduced if and only if $R_{\mathfrak{p}}$ is reduced for every prime ideal \mathfrak{p} .
- 6. Suppose that every prime ideal of R is maximal. Show that Spec R is a Hausdorff space. Hint: Reduce to the case where R has trivial nilradical. Given primes \mathfrak{p} and \mathfrak{q} , choose $f \in \mathfrak{p} - \mathfrak{q}$, and note that f vanishes in $R_{\mathfrak{p}}$...
- 7. Let A be a Noetherian ring and M a finitely-generated A-module. Show that if $M_{\mathfrak{p}}$ is a free $A_{\mathfrak{p}}$ module then M_f is free over A_f for some $f \in A$.
- 8. If R is a reduced ring, show that f is a zerodivisor if and only if f is contained in some minimal prime.
- 9. Let A be Noetherian and M a finitely-generated module. Let μ_M : Spec $A \to \mathbb{R}$ be such that $\mu_M(\mathfrak{p}) = \dim(M_\mathfrak{p}/\mathfrak{p}M_\mathfrak{p})$ (where the dimension is being taken over the field $k(\mathfrak{p}) := A_\mathfrak{p}/\mathfrak{p}A_\mathfrak{p}$).
 - (a) Show that μ_M is upper-semicontinuous. That is, for all $\mathfrak{p} \in \operatorname{Spec} A$ and $\epsilon > 0$, there is an open neighborhood $U \subset \operatorname{Spec} A$ of \mathfrak{p} , such that $\mu_M(\mathfrak{q}) \leq \mu_M(\mathfrak{p}) + \epsilon$ for all $\mathfrak{q} \in U$.

Solution: Fix $\mathfrak{p} \in \operatorname{Spec} A$. Let $x_1/s_1, \dots, x_n/s_n$ be a minimal generating set for $M_{\mathfrak{p}}$. Since the s_i are units, it's clear that $x_1/1, \dots, x_n/1$ also generate $M_{\mathfrak{p}}$. Define $\phi: A^n \to M$ such that $e_i \mapsto x_i$. Let C be the cokernel. Since $\phi_{\mathfrak{p}}$ is surjective, $C_{\mathfrak{p}} = 0$ and since C is finitely-generated, there is a $f \notin \mathfrak{p}$ such that $C_f = 0$. Thus for all $\mathfrak{q} \in D(f), C_{\mathfrak{q}} = 0$ by virtue of it being a further localization of C_f . In particular, $\mu_M(\mathfrak{q}) \leq \mu_M(\mathfrak{p})$ for all $\mathfrak{q} \in D(f)$.

(b) If A is reduced and μ_M is constant, show that M is locally free (i.e. $M_{\mathfrak{p}}$ is free for all \mathfrak{p}).

Solution: Consider $M_{\mathfrak{p}}$ for some prime \mathfrak{p} . By taking a minimal generating set, we have a surjection $\psi: A_{\mathfrak{p}}^n \to M_{\mathfrak{p}}$. Let K be the kernel. Let $\mathfrak{q}_1, \cdots, \mathfrak{q}_k$ be the minimal primes of $A_{\mathfrak{p}}$. Since A is reduced, $A_{\mathfrak{q}_i}$ is a field. From the sequence

$$0 \to K_{\mathfrak{q}_i} \to A^n_{\mathfrak{q}_i} \xrightarrow{\phi_{\mathfrak{q}_i}} M_{\mathfrak{q}_i} \to 0$$

we see that $\phi_{\mathfrak{q}_i}$ is a surjection of vector spaces. Since $\mu_M(\mathfrak{q}_i) = \mu_M(\mathfrak{p}) = n$, we know that $\phi_{\mathfrak{q}_i}$ must be an isomorphism, meaning that $K_{\mathfrak{q}_i} = 0$. Let $S \subset A_\mathfrak{p}$ be the complement of the union of the \mathfrak{q}_i . This is a multiplicative set. The only primes of $S^{-1}(A_\mathfrak{p})$ are the \mathfrak{q}_i Thus $S^{-1}K = 0$ since it vanishes at every prime. As Kis finitely-generated, there is an $f \in S$ such that $f \in \operatorname{ann}(K)$. However since flies outside of every minimal prime of $A_\mathfrak{p}$ and $A_\mathfrak{p}$ is reduced we know that it is a non-zerodivisor on $A_\mathfrak{p}$. As $K \subseteq A_\mathfrak{p}^n$ and $f \cdot K = 0$, we must have K = 0.

(c) If A is reduced, show that μ_M is continuous if and only if M is locally free.

Solution: $(\Rightarrow) \mu_M$ has discrete image in \mathbb{R} , so continuity is equivalent to being locally constant. Given $\mathfrak{p} \in \operatorname{Spec} A$, there is some $f \notin \mathfrak{p}$ such that μ_M is constant on D(f). In other words, for every prime \mathfrak{q} of A_f , μ_M is constant (thought of as a function of $\operatorname{Spec} A_f$). The result now follows from the previous problem.

(\Leftarrow)For any \mathfrak{p} , $M_{\mathfrak{p}}$ is free over $A_{\mathfrak{p}}$ by hypothesis. Thus, there is some $f \notin \mathfrak{p}$ such that M_f is free over A_f , meaning that μ_M is constant on D(f).

- 10. Let A be a Noetherian ring and M a finitely generated module. We define the support of M via Supp $M = \{ \mathfrak{p} \in \text{Spec } A : M_{\mathfrak{p}} \neq 0 \}$. Show the following:
 - (a) Supp $M = V(\operatorname{ann}(M))$ where $\operatorname{ann}(M) = \{a \in A : ax = 0 \text{ for all } x \in M\}.$
 - (b) If $0 \to M' \to M \to M'' \to 0$ is exact, then Supp $M = \text{Supp } M' \cup \text{Supp } M''$.