Math 520: Fall 2016

Problem Set 3

1. Show that the tensor product of R-modules is commutative and associative. That is, deduce natural isomorphisms:
(a) $M \otimes_{R} N \cong N \otimes_{R} M$
(b) $M \otimes_{R}\left(N \otimes_{R} Q\right) \cong\left(M \otimes_{R} N\right) \otimes_{R} Q$.
2. Let $A \rightarrow B$ be a ring morphism and let M and N be A-modules. Show that

$$
\left(M \otimes_{A} N\right) \otimes_{A} B \cong\left(M \otimes_{A} B\right) \otimes_{B}\left(N \otimes_{A} B\right)
$$

(Hint: Using (1), this is a one-line proof.)
3. Let $0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} Q \rightarrow 0$ be a exact sequence of R-modules. Show that the following are equivalent:
(a) There exists a map $\phi: Q \rightarrow N$ such that $g \phi=I d_{Q}$.
(b) There exists a map $\psi: N \rightarrow M$ such that $\psi f=I d_{M}$.
(c) There is an isomorphism $\omega: N \rightarrow M \oplus Q$ that fits into a commutative diagram:

Where i and π are the canonical inclusion and projections.
Such a short exact sequence is called a split exact sequence; the maps ϕ and ψ are usually called splittings.
4. Let $0 \rightarrow M \xrightarrow{f} N \xrightarrow{g} Q \rightarrow 0$ be a split exact sequence. Show that for any R-module E we get an induced exact sequence $0 \rightarrow E \otimes_{R} M \xrightarrow{E \otimes f} E \otimes_{R} N \xrightarrow{E \otimes g} E \otimes_{R} Q \rightarrow 0$.
5. Let A be a noetherian ring and let M and N be finitely-generated A-modules.
(a) Show that $M_{\mathfrak{p}}=0$ if and only if $M \otimes_{A} k(\mathfrak{p})=0 .\left(k(\mathfrak{p}):=A_{\mathfrak{p}} / \mathfrak{p} A_{\mathfrak{p}}\right.$ is the residue field at \mathfrak{p}.)
(b) Show that $M \otimes_{A} N$ is a finitely-generated A-module.
(c) Show that $\operatorname{Supp}\left(M \otimes_{A} N\right)=\operatorname{Supp}(M) \cap \operatorname{Supp}(N)$. (Use part (a) and question (2).)
6. A morophism of rings $A \rightarrow B$ is called faithfully flat if B is a flat A-module and for all A-modules $M, B \otimes_{A} M=0$ if and only if $M=0$.
(a) If $A \rightarrow B$ is faithfully flat, show that the morphism is injective. Give an example of a flat map $R \rightarrow S$ which is not injective. (Hint: Take R to be a product of rings...)
(b) Let $A \rightarrow B$ be faithfully flat. Let $f: M \rightarrow N$ be a map of A-modules. Show that f is injective (resp. surjective, an isomorphism) if and only if $B \otimes_{A} f$ is.
(c) Show that $A \rightarrow B$ is faithfully flat if and only if B is flat over A and $\operatorname{Spec} B \rightarrow$ $\operatorname{Spec} A$ is surjective.
(d) Prove that $A \rightarrow A[X]$ is faithfully flat.
7. Let A and B be R-algebras. Let $i_{A}: A \rightarrow A \otimes_{R} B$ be defined via $i_{A}(a)=a \otimes 1$, and similarly define i_{B}. Show that $A \otimes_{R} B$ is the coproduct of A and B in the category of R-algebras. That is, given any R-algebra C with R-algebra maps $f_{A}: A \rightarrow C$ and $f_{B}: B \rightarrow C$, there is a unique $\phi: A \otimes_{R} B \rightarrow C$ compatible with the $f_{A}, f_{B}, i_{A}, i_{B}$.
8. (Tensor-Hom Adjunction) For a pair M, N of R-modules, we define $\operatorname{Hom}_{R}(M, N)$ to be set of all R-linear maps between them.
(a) Verify that $\operatorname{Hom}_{R}(M, N)$ is an R-module by declaring that $r \cdot \phi(x)=\phi(r \cdot x)$.
(b) Deduce a natural isomorphism of R-modules: $\operatorname{Hom}_{R}\left(M \otimes_{R} N, P\right) \cong \operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{R}(N, P)\right)$.
9. Show that E is a flat R-module if and only if the functor $E \otimes_{R}$ - preserves injective maps. Using this, show that any free R-module is flat.

