Math 520: Fall 2016 Problem Set 3

- 1. Show that the tensor product of R-modules is commutative and associative. That is, deduce natural isomorphisms:
 - (a) $M \otimes_R N \cong N \otimes_R M$
 - (b) $M \otimes_R (N \otimes_R Q) \cong (M \otimes_R N) \otimes_R Q.$
- 2. Let $A \to B$ be a ring morphism and let M and N be A-modules. Show that

 $(M \otimes_A N) \otimes_A B \cong (M \otimes_A B) \otimes_B (N \otimes_A B)$

(*Hint: Using (1), this is a one-line proof.*)

- 3. Let $0 \to M \xrightarrow{f} N \xrightarrow{g} Q \to 0$ be a **exact** sequence of *R*-modules. Show that the following are equivalent:
 - (a) There exists a map $\phi: Q \to N$ such that $g\phi = Id_Q$.
 - (b) There exists a map $\psi: N \to M$ such that $\psi f = Id_M$.
 - (c) There is an isomorphism $\omega: N \to M \oplus Q$ that fits into a commutative diagram:

Where i and π are the canonical inclusion and projections.

Such a short exact sequence is called a *split exact sequence*; the maps ϕ and ψ are usually called *splittings*.

- 4. Let $0 \to M \xrightarrow{f} N \xrightarrow{g} Q \to 0$ be a **split** exact sequence. Show that for any *R*-module *E* we get an induced exact sequence $0 \to E \otimes_R M \xrightarrow{E \otimes f} E \otimes_R N \xrightarrow{E \otimes g} E \otimes_R Q \to 0$.
- 5. Let A be a noetherian ring and let M and N be finitely-generated A-modules.
 - (a) Show that $M_{\mathfrak{p}} = 0$ if and only if $M \otimes_A k(\mathfrak{p}) = 0$. $(k(\mathfrak{p}) := A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ is the residue field at \mathfrak{p} .)
 - (b) Show that $M \otimes_A N$ is a finitely-generated A-module.
 - (c) Show that $\operatorname{Supp}(M \otimes_A N) = \operatorname{Supp}(M) \cap \operatorname{Supp}(N)$. (Use part (a) and question (2).)
- 6. A morphism of rings $A \to B$ is called *faithfully flat* if B is a flat A-module and for all A-modules $M, B \otimes_A M = 0$ if and only if M = 0.
 - (a) If $A \to B$ is faithfully flat, show that the morphism is injective. Give an example of a flat map $R \to S$ which is not injective. (*Hint: Take R to be a product of rings...*)

- (b) Let $A \to B$ be faithfully flat. Let $f : M \to N$ be a map of A-modules. Show that f is injective (resp. surjective, an isomorphism) if and only if $B \otimes_A f$ is.
- (c) Show that $A \to B$ is faithfully flat if and only if B is flat over A and Spec $B \to$ Spec A is surjective.
- (d) Prove that $A \to A[X]$ is faithfully flat.
- 7. Let A and B be R-algebras. Let $i_A : A \to A \otimes_R B$ be defined via $i_A(a) = a \otimes 1$, and similarly define i_B . Show that $A \otimes_R B$ is the coproduct of A and B in the category of R-algebras. That is, given any R-algebra C with R-algebra maps $f_A : A \to C$ and $f_B : B \to C$, there is a unique $\phi : A \otimes_R B \to C$ compatible with the f_A, f_B, i_A, i_B .
- 8. (Tensor-Hom Adjunction) For a pair M, N of R-modules, we define $\operatorname{Hom}_R(M, N)$ to be set of all R-linear maps between them.
 - (a) Verify that $\operatorname{Hom}_R(M, N)$ is an *R*-module by declaring that $r \cdot \phi(x) = \phi(r \cdot x)$.
 - (b) Deduce a natural isomorphism of *R*-modules: $\operatorname{Hom}_R(M \otimes_R N, P) \cong \operatorname{Hom}_R(M, \operatorname{Hom}_R(N, P)).$
- 9. Show that E is a flat R-module if and only if the functor $E \otimes_R -$ preserves injective maps. Using this, show that any free R-module is flat.