Math 520: Fall 2016

Problem Set 4

1. Let A and B be R-algebras. Consider the pushout square

(a) If $A=R[X]$, show that $A \otimes_{R} B \cong B[X]$.
(b) If $R \rightarrow A$ is finite, show that $B \rightarrow A \otimes_{R} B$ is finite.
(c) If $R \rightarrow A$ is flat, show that $B \rightarrow A \otimes_{R} B$ is flat.
(d) If $\operatorname{Spec} A \rightarrow \operatorname{Spec} R$ is surjective, show that $\operatorname{Spec}\left(A \otimes_{R} B\right) \rightarrow \operatorname{Spec} B$ is surjective.
2. Let $A \subset B$ be an integral extension of rings. Let L be an algebraically closed field. Let $\phi: A \rightarrow L$ be any morphism. Show that there is an extension $\Phi: B \rightarrow L$ by completing the following outline:
(a) Let $\mathfrak{p}=\operatorname{ker} \phi$. We have an induced $\bar{\phi} A / \mathfrak{p} \rightarrow L$. By the Going-up theorem, there is a $\mathfrak{q} \subset B$ such that $\mathfrak{q} \cap A=\mathfrak{p}$. Show that it suffices to extend $\bar{\phi}$ to B / \mathfrak{q}. Thus, reduce to the case where A and B are domains.
(b) Now, reduce to the case where A and B are fields.
(c) Use Zorn's Lemma to prove the statement.
3. Let $A \subset B$ be an integral extension.
(a) Prove that for primes $\mathfrak{q} \subset \mathfrak{q}^{\prime}$ of B, with $\mathfrak{q} \neq \mathfrak{q}^{\prime}$, we have $\mathfrak{q} \cap A \neq \mathfrak{q}^{\prime} \cap A$.
(b) Conclude, using the Going-up theorem, that $\operatorname{dim} A=\operatorname{dim} B$.
4. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be ring morphisms.
(a) Show that if f and g are finite-type, then $g f$ is finite-type.
(b) Show that if $g f$ is finite-type and g is finite then f is finite-type.
5. Let A be a finite-type \mathbb{Z}-algebra. Prove that for every maximal ideal \mathfrak{m} of $A, A / \mathfrak{m}$ is a finite field. Hint: Show that the case of A / \mathfrak{m} having characteristic 0 leads to a contradiction by using 4(b).
6. Let k be an infinite field. Let $0 \neq f \in k\left[X_{1}, \cdots, X_{n}\right]$.
(a) Prove that there are $a_{i} \in k$ such that $f\left(a_{1}, a_{2}, \cdots, a_{n}\right) \neq 0$.
(b) Prove that there are $b_{i} \in k$ and an automorphism ϕ of $k\left[X_{1}, \cdots, X_{n}\right]$ mapping $X_{i} \mapsto b_{i}$ such that $\phi(f)$ is monic in X_{n}. Remark: Nagata showed that even if k is finite, there still exists an automorphism of $k\left[X_{1}, \cdots, X_{n}\right]$ that will make f monic. However, it will no longer preserve the degree of f as in (b).
7. Let A be a finite-dimensional k-algebra where k is a field.
(a) Show that if A is a domain, then it is a field.
(b) Show that every prime ideal of A is maximal.
(c) Show that the cardinality of $\operatorname{Spec} A$ is bounded by $\operatorname{dim}_{k} A$.
(d) If $\psi: B \rightarrow C$ is a finite morphism of rings, show that for every $\mathfrak{p} \in \operatorname{Spec} B$, there are only finitely many $\mathfrak{q} \in \operatorname{Spec} C$ such that $\phi^{-1}(\mathfrak{q})=\mathfrak{p}$.
