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1. Derivatives

Most of the antiderivatives that we construct for real-valued functions in Calculus II are

found by trial and error. That is, whenever a function appears as the result of differenti-

ating, we turn the equation around to obtain an antiderivative formula.

Since we have the same product rule, quotient rule, sum rule, chain rule etc. available to

us for differentiating complex functions, we already know many antiderivatives.

For example, by differentiating f (z) = zn one obtains f ′(z) = nzn−1, and from this one

sees that the antiderivative of zn is 1
n+1
zn+1 – except for the very important case where

n = −1. Of course that special case is very important in real analysis as it leads to

the natural logarithm function. It will turn out to be very important in complex analysis

as well, and will lead us to the complex logarithm. But this foreshadows some major

differences from the real case, due to the fact that the complex exponential is not an

injective function and therefore does not have an inverse function.

Besides the differentiation formulas, we have another tool available as well – the Cauchy

Riemann equations.

Theorem 1.1. Suppose f (z) = u(z) + iv(z), where u(z) and v(z) are real-valued func-

tions of the complex variable z .

• If f ′(z) exists then the partial derivatives of u and v exist at the point z and

satisfy ux(z) = vy(z) and uy(z) = −vx(z).

• If u and v are defined and have continuous partial derivatives in an open set

Ω which satisfy ux = vy and uy = −vx , then f is analytic in Ω and f ′(z) =

a(z) + ib(z) where a and b are the real-valued functions defined on Ω such that[
a −b
b a

]
=

[
ux uy

vx vy

]
.

In particular, in this case we have

f ′ = ux − iuy = ux + ivx = vy − iuy = vy + ivx .
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We can use this to check that the function exp(z) is equal to its derivative. Since we have

exp(x + iy) = ex cos y + iex sin y , we take u(x + iy) = ex cos y and v(x + iy) = ex sin y

so, as expected, we have

exp′(x + iy) = ux − iuy = ex cos y + ex sin y = exp(x + iy).

2. Antiderivatives

In Calculus III we learned how to find a function with specified partial derivatives, or de-

termine that such a function does not exist. We can apply this idea to find antiderivatives

of complex functions. If we are given a complex function f (z) = u(z) + iv(z) then we

could attempt to find real-valued functions U and V such that Ux = u, Uy = −v , Vx = v

and Vy = u. Then, according to Theorem 1.1, the function F (z) = U(z) + iV (z) would

be an antiderivative for f .

Should we expect to be able to find functions U and V like that? We know from Calculus

III that this is not always possible. Suppose we are given a vector field

V = P (x, y)e1 +Q(x, y)e2

(where P and Q have continuous partials). We learned in Calculus III that there cannot

exist a function f (x, y) with ∇f = V unless Py = Qx . The reason is that if such a

function f did exist then we would know Py = fyx = fxy = Qx . (Recall that we have to

know that f has continuous second partials to conclude that the mixed partials are equal.)

Assume that f (z) = u(z)+iv(z) is an analytic function such that u and v have continuous

partial derivatives. (Remember that this continuity is an extra assumption. We have

not shown that the real and imaginary parts of an analytic function necessarily have

continuous partial derivatives.) What does our easy test tell us? We are looking for

functions functions U and V such that Ux = u, Uy = −v , Vx = v and Vy = u. If these

functions existed then their mixed partials would be equal, so the easy test says we need to

check that −vx = Uxy = Uyx = uy , and ux = Vxy = Vyx = vy . But this is exactly what the

Cauchy-Riemann equations guarantee! So the easy test will not cause us any trouble (at

least not when u and v have continuous partials). This might encourage us to imagine

that any analytic function might have an antiderivative. After all, this does happen in

Calculus II: if f (x) is continous on the interval [a, b] then F (x) =
∫ x
a f (t)dt satisfies

F ′(x) = f (x) for x ∈ [a, b]. Could something similar be true for analytic functions? The

answer turns out to be surprising.

Example 2.1. Let’s use this idea to find an antiderivative for the function f (z) = z2.

We write f (x + iy) = (x2 − y 2) + i(2xy). We are looking for a function F (x + iy) =

U(x + iy) + iV (x + iy) such that F ′(z) = f (z). So, by the Cauchy-Riemann equations,

we need Ux = x2 − y 2 and Uy = −2xy , or ∇U = (x2 + y 2)e1 − 2xye2.
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Recall from Calculus III that the “Fundamental Theorem of Calculus for vector fields”

tells us how to find U, if it exists. We arbitrarily decide that U(0) = 0 (since U is only

determined up to a constant anyway).

If we choose a piecewise smooth path γ starting at 0 and ending at the point a+ ib then

the fundamental theorem says:∫
γ

(x2 − y 2)dx − 2xydy =
∫
γ
∇U · ds = U(a + ib)− U(0) = U(a + ib).

Let’s choose the path γ(t) = tae1 + tbe2, t ∈ [0, 1]. Using this path we have∫
γ

(x2 − y 2)dx − 2xydy =
∫ 1
0

(a2 − b2)t2adt − 2abt2bdt =
1

3
a3 − ab2.

In other words, U(x, y) = 1
3
x3 − xy 2.

A very similar calculation shows that V (x, y) = x2y − 1
3
y 3. Thus we have

F (x + iy) =
x3

3
+ ix2y − xy 2 − i

y 3

3
=
z3

3
.

It works!

We summarize this discussion in the following proposition.

Proposition 2.2. Suppose that f (z) = u(z) + iv(z) is an analytic function in an open

set Ω. Let z0 ∈ Ω. Assume there exists a function F (z), analytic on Ω, such that

F ′(z) = f (z) and F (z0) = 0. If γ is any piecewise smooth path in Ω starting at zo and

ending at z then we have

F (z) =
∫
γ
udx − vdy + i

∫
γ
vdx + udy

3. The function f (z) =
1

z

Now for the first part of the surprise. It turns out to be easy to see, by looking at the

function f (z) = 1/z , that it cannot be true that every function which is analytic on an

open set Ω has an antiderivative defined on all of Ω.

Proposition 3.1. There is no function F (z) which is analytic on C − {0} and is an

antiderivative of
1

z
.

Proof. Assume that F were such a function. By subtracting a constant from F we can

assume that F (1) = 0.

We know that every number z ∈ C−{0} can be written as z = exp(w) for some w ∈ C.

Now consider the composite function F ◦ exp. By the chain rule we have

(F ◦ exp)′(w) = F ′(exp(w)) exp′(w) =
1

expw
exp(w) = 1.
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We also know that two analytic functions with the same derivative differ by a constant.

Thus we see that F ◦ exp(w) = w + c for some constant c , and in fact we must have

c = 0 since c = F (exp(0)) = F (1) = 0.

But this is certainly impossible, since it implies that

2πi = F ◦ exp(2πi) = F (1) = 0.

In other words, if such a function F existed then it would be an inverse function to the

function exp, which does not have an inverse since it is not injective. �

Is this a paradox? What goes wrong if we try to use line integrals to find an antiderivative

for 1/z , as we did for the function z2?

If we define f (z) = 1/z then we have

f (x + iy) =
1

x + iy
=

x

x2 − y 2 −
iy

x2 − y 2 .

If f had an antiderivative F (z) = U(z)+ iV (z) then the imaginary part V (z) would satisfy

Vx =
−y

x2 + y 2
and Vx =

x

x2 + y 2
,

or equivalently,

∇V =
−y

x2 + y 2
e1 +

x

x2 + y 2
e2.

Let’s try using our line integral method to find a formula for V (z) (assuming such a

function exists). We can’t start our paths at 0 since it is not in the domain of f . So we

will start at 1. We may as well require that V (1) = 0.

Proposition 2.2 says that if V exists then to find V (a + ib) we can choose any path γ

from 1 to a + ib in Ω and we will have

V (a + ib) =
∫
γ

−y dx
x2 + y 2

+
x dy

x2 + y 2
.

What happens if we evaluate this integral using two different paths from 1 to −1 in Ω,

such as the upper and lower halves of the unit circle? Let’s set γ+(t) = cos t + i sin t and

γ−(t) = cos t − i sin t. Then we have∫
γ+

−y dx
x2 + y 2

+
x dy

x2 + y 2
=
∫ π

0
(− sin t)(− sin t) + (cos t)(cos t) dt =

∫ π

0
dt = π,

and∫
γ−

−y dx
x2 + y 2

+
x dy

x2 + y 2
=
∫ π

0
(sin t)(− sin t) + (cos t)(− cos t) dt = −

∫ π

0
dt = −π.

So choosing these two different paths we get two different values for the integral. It

is not a coincidence that the two values differ by a multiple of 2π. In fact, you should

be able to convince yourself that the “value” of F (−1) obtained this way could be any
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number of the form i(π + 2nπ) for an integer n. That is, the numbers that arise from

computing integrals like this, using various choices of path, include every number z such

that exp(z) = −1.

4. Contour integrals

It should be clear by now that line integrals will play an important role in computing an-

tiderivatives of complex functions, in those cases where an antiderivative exists. Hopefully

it is also clear that we would rather not be rewriting these integrals in terms of real and

imaginary parts. So it is time to introduce a complex version of the line integral from

Calculus III. The complex version is called a contour integral.

First we introduce some terminology.

Definition 4.1. By a path we mean a continuous function γ : [a, b] → C, where [a, b]

is an interval in R. If γ is a path we may write γ(t) = x(t) + iy(t) where x and y are

continuous functions of t ∈ [a, b]. If x ′(t) and y ′(t) exist for some t in [a, b], then we

say that γ ′(t) exists and we define γ ′(t) = x(t) + iy(t). We say that γ is smooth if γ ′ is

defined and continuous on the entire interval [a, b] and γ ′(t) 6= 0 for t ∈ [a, b]. (Here we

are taking γ ′(a) to mean the right derivative at a and γ ′(b) to mean the left derivative

at b.) We say that γ is a contour if γ : [a, b]→ C is piecewise smooth in the sense that

there are numbers x0 = a < x1 < · · · xn = b such that each for i = 1, . . . n the restriction

of γ to the interval [xi−1, xn] is smooth.

If γ(a) = γ(b) we will say that γ is a closed contour. Otherwise we say that it starts at

γ(a) and ends at γ(b).

Of course this is nothing new. Viewing C as a 2-dimensional vector space over R, with

standard basis (1, i), we see that contours correspond exactly to the types of paths that

we used for line integrals in Calculus III. The complex number γ ′(t), viewed as a vector, is

just the velocity of the path γ, and the real number |γ ′(t)| is its speed. Recall that we can

compute the arclength of a path by integrating the speed of a parametrization provided

that the speed is never 0. (If the speed is allowed to be 0 then the parametrization

might stop and retrace portions of the path, making the integral of speed larger than the

arclength.) This is the main reason why we require γ ′(t) 6= 0 for a smooth path. Another

reason is that a curve with corners could be given a smooth parametrization if the velocity

were allowed to be 0 at the corners, and we would rather think of a corner as being a

non-smooth point on the curve.

Definition 4.2. We will write Length(C) to denote the arclength of a contour C. Thus,

if C is smooth, with smooth parametrization γ : [a, b]→ C then

Length(C) =
∫ b

a
|γ ′(t)| dt.
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If C is piecewise smooth then Length(C) is the sum of the lengths of the smooth paths

that make up C.

To integrate a continuous complex-valued function of a real variable, we just integrate

the real and imaginary parts separately. (Such a function could be viewed as a continuous

path, but we are not thinking of it that way at the moment.)

Definition 4.3. Suppose g : [a, b]→ C is a continuous complex-valued function of a real

variable. Write g(t) = x(t) + iy(t) where x and y are real-valued functions. Then∫ b

a
g(t)dt =

∫ b

a
x(t)dt + i

∫ b

a
y(t)dt.

Recall from Calculus that the value of this integral does not change if the path is

reparametrized (as long as the direction of travel remains the same; reversing the direc-

tion changes the sign). For this reason, people often specify a contour by just describing

the curve in the plane that the path follows, and the direction along that curve. You may

then choose any parametrization you wish in order to compute the integral.

Definition 4.4. Suppose that γ : [a, b] → C is a smooth path, and that f (z) is a

continuous function defined on an open set which contains the image curve of γ. Then

we define ∫
γ
f (z)dz =

∫ b

a
f (γ(t))γ ′(t)dt.

If γ is a contour, so there are numbers x0 = a < x1 < · · · xn = b such that each for

i = 1, . . . n the restriction of γ to the interval [xi−1, xn] is smooth, then we define∫
γ
f (z)dz =

n∑
k=1

∫ xk

xk−1
f (γ(t))γ ′(t)dt.

Of course, if f (z) = u(z) + iv(z), then∫
γ
f (z)dz =

∫
γ
udx − vdy + i

∫
γ
vdx + udy.

This means that we can reformulate Proposition 2.2 in a way which makes it clear that it

is really the fundamental theorem of calculus. We do this below, and give a self-contained

proof, which involves nothing more than the following chain rule for a composition of a

complex functions with a smooth path.

Proposition 4.5. Suppose that f (z) is analytic in an open set Ω and that γ : [a, b]→ Ω

is a smooth path. Then

(f ◦ γ)′(t) = f ′(γ(t))γ ′(t).
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Proof. Express f and γ in terms of real and imaginary parts as f (z) = u(z) + iv(z) and

γ(t) = x(t) + iy(t). We will apply the chain rule from real 2-variable calculus to u and

v . We obtain

(u ◦ γ)′(t) = ux(γ(t))x ′(t) + uy(γ(t))y ′(t)

and

(v ◦ γ)′(t) = vx(γ(t))x ′(t) + vy(γ(t))y ′(t)

But, since f ′(z) = ux(z)− iuy(z) = vy(z) + ivx(z), we have

f ′(γ(t))γ ′(t) =
(
ux(γ(t))x ′(t) + uy(γ(t))y ′(t)

)
+ i

(
vx(γ(t))x ′(t) + vy(γ(t))y ′(t)

)
,

where we used the first form of f ′(z) to expand the real part and the second form to

expand the imaginary part. �

Theorem 4.6 (Fundamental Theorem of Calculus). Suppose that f (z) is analytic in an

open set Ω and that γ : [a, b]→ Ω is a contour from A = γ(a) to B = γ(b). Then∫
γ
f ′(z)dz = f (B)− f (A).

Proof. In the case where γ is a smooth path we apply the ordinary fundamental theorem

of calculus to the real and imaginary parts of f ◦ γ, obtaining∫
γ
f ′(z)dz =

∫ b

a
f ′(γ(t))γ ′(t)dt =

∫ b

a
(f ◦γ)′(t)dt = f (γ(b))− f (γ(a)) = f (B)− f (A).

In the more general case of a contour, the right hand side will be a telescoping sum:

F (Xn)− F (Xn−1) + F (Xn−1)− F (Xn−2) + · · ·+ F (X1)− F (X0) = F (Xn)− F (X0),

where Xk = γ(xk). The sum collapses to again give F (B)− F (A). �

5. Estimating contour integrals

The following basic estimate for the size of a contour integral will be used repeatedly.

Proposition 5.1. Suppose that f (z) is analytic in an open set Ω and that C is a contour

in Ω. If f (w)| < M for each point w lying on the contour C then∣∣∣∣∫
C
f (z)dz

∣∣∣∣ ≤ M Length(C).

The Proposition follows easily from the following lemma, which is an integral version of

the triangle inequality.

Lemma 5.2. If v : [a, b]→ C is a continuous function then∣∣∣∣∣
∫ b

a
v(t) dt

∣∣∣∣∣ ≤
∫ b

a
|v(t)|dt.
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Remark 5.3. We can think of v as the velocity of a path in the complex plane. Since

continuous functions of a real variable have antiderivatives, we may write v(t) = γ ′(t)

for some path γ. Then the left side of the conclusion of the Lemma is the arclength of

γ, while the right side is the displacement from the first point to the last point. Thus the

lemma says that “the shortest path between two points is a straight line.” We do need

to supply a proof, though. Actually, we will give two.

First proof of 5.2. We consider Riemann sums for the two integrals. Let ε > 0 and

suppose that a = t0 < t1 < · · · < tn = b is a partition such that both integrals are

approximated within ε by their right sums based on this partition. Then∣∣∣∣∣
∫ b

a
v(t) dt

∣∣∣∣∣− ε ≤ |
n∑
i=1

v(ti)∆ti | ≤
n∑
i=1

|v(ti)|∆ti ≤
∫ b

a
|v(t)|dt + ε.

Since ε was arbitrary, this implies the lemma. �

Second proof of 5.2. Here we reduce the proof to the analogous result for real-valued

functions (which can be proved using Riemann sums and the triangle inequality as above).

Let
∫ b
a v(t)dt = re iθ. Then

∫ b
a e
−iθv(t)dt = r . Since the latter integral is real, it is equal

to the integral of the real part of the integrand. Thus we have∣∣∣∣∣
∫ b

a
v(t) dt

∣∣∣∣∣ = r =

∣∣∣∣∣
∫ b

a
<(e−iθv(t))dt

∣∣∣∣∣ ≤
∫ b

a
|<(e−iθv(t))|dt

≤
∫ b

a
|e−iθv(t)|dt =

∫ b

a
|v(t)|dt.

�

Proof of Proposition 5.1. We just apply Lemma 5.2 to the definition of the contour in-

tegral. Choose a parametrization γ : [a, b]→ C for C. Then∣∣∣∣∫
C
f (z)dz

∣∣∣∣ =

∣∣∣∣∣
∫ b

a
f (γ(t))γ ′(t)dt

∣∣∣∣∣ ≤
∫ b

a
|f (γ(t)||γ ′(t)|dt

≤ M
∫ b

a
|γ ′(t)dt| = M Length(C).

�

6. Path independence

So far we have seen that an analytic function f (z) on an open set Ω may fail to have an

antiderivative defined everywhere in Ω, but may have an antiderivative defined on some

smaller open set. The basic example is f (z) = 1
z

, which does not have an antiderivative

on C− {0}, but does have an antiderivative, for example, on the set {z ∈ C | <z > 0}.

We have also seen, from the Fundamental Theorem of Calculus, that if f (z) does have an

antiderivative on the domain Ω then it can be computed using contour integrals. Given a
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point w0 ∈ Ω, if f has an antiderivative on Ω then there is a unique antiderivative F on

Ω such that F (w0) = 0, and we have

F (w) =
∫
C
f (z)dz

where C is any contour from w0 to w . The next theorem shows that the property that

the contour integral above does not depend on the choice of contour characterizes the

functions which have antiderivatives.

Definition 6.1. We will call a contour L is a polygonal path if it is made of finitely many

parametrized line segments, and a zigzag if all of these segments are either horizontal or

vertical. That is, L is a zigzag if it can be parametrized as γ(t) = x(t) + iy(t) where

either x ′(t) = 0 or y ′(t) = 0 for any t at which γ ′(t) exists and is non-zero (and this

occurs at all but finitely many values of t).

Definition 6.2. We say that an open set Ω is a domain if for any z1, z2 ∈ Ω there is a

polygonal path from z1 to z2 contained in Ω.

Theorem 6.3. Let f (z) be analytic on a domain Ω. The following are equivalent

(1) f (z) has an antiderivative defined on all of Ω;

(2)
∮
C
f (z)dz = 0 for any closed contour C in Ω;

(3)
∮
P
f (z)dz = 0 for any closed polygon P in Ω.

(4)
∮
L
f (z)dz = 0 for any closed zigzag L in Ω.

Remark 6.4. Condition (2) is equivalent to saying that
∫
C f (z)dz =

∫
C′ f (z)dz whenever

C and C ′ are contours in Ω with the same starting and ending points. Conditions (3) and

(4) say the same thing, but for more special types of contours.

Proof of Theorem 6.3. We have (1) ⇒ (2) by the Fundamental Theorem of Calculus,

and (2) ⇒ (3) since every polygon is a contour, and (3) implies (4) since every zigzag is

a polygon. So it remains to show that (4) ⇒ (1).

We assume that condition (4) holds. Let w0 be an arbitrary point in the domain Ω. We

will construct a function F defined on Ω such that F (w0) = 0 and F ′(w) = f (w).

By Remark 6.4 it makes sense to define

F (w) =
∫
L
f (z)dz

where L is any zigzag from w0 to w . (This is well-defined because different choices for L

will produce the same value for F (w). Moreover, the Fundamental Theorem of Calculus
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guarantees that this will give a formula for F if such a function F exists.) We must show

that

lim
h→0

∣∣∣∣∣F (w + h)− F (w)

h
− f (w)

∣∣∣∣∣ = 0.

Let ε be given. Since Ω is open and f ′(w) exists, there exists δ > 0 such that

• the disk B(w, δ) = {z | |z − w | < δ} is contained in Ω; and

• |h| < δ ⇒
∣∣∣∣∣ f (z + h)− f (z)

h
− f ′(w)

∣∣∣∣∣ < ε

2
.

Suppose that 0 < |h| < δ and and let K be a zigzag from z0 to w . There is a zigzag L

from w to w + h which is contained in the disk B(w, h), for example consisting of one

horizontal and one vertical line segment. Since

F (z + h) =
∫
K
f (z)dz +

∫
L
f (z)dz

we have F (z + h)− F (z) =
∫
L f (z)dz . By the Fundamental Theorem of Calculus, since

the constant function 1 has antiderivative z , we know that∫
L
f (w)dz = f (w)

∫
L
dz = f (w)h.

Since |f (z) − f (w)| < ε
2

for z on the zigzag L, and the zigzag L has length < 2|h|, we

have ∣∣∣∣∣F (z + h)− F (z)

h
− f (w)

∣∣∣∣∣ =

∣∣∣∣1h
∫
L
f (z)dz −

1

h

∫
L
f (w)dz

∣∣∣∣
=

1

|h|

∣∣∣∣∫
L

(f (z)− f (w))dz

∣∣∣∣
≤
εLength(L)

2|h| ≤ ε

Since ε > 0 was arbitrary, this shows that

lim
h→0

∣∣∣∣∣F (w + h)− F (w)

h
− f (w)

∣∣∣∣∣ = 0,

and hence that F ′(w) = f (w) for all w ∈ Ω. Thus (4) ⇒ (1), and the proof is

complete. �

7. A topological interlude

Now we will take a break from analysis and introduce the basic concepts and theorems

about the topology of R and C that we will need later on. It turns out that everything

we have to say here is valid for Rm for any m > 0, so we will give the statements in this

general form. Of course we know that C is the same as R2, topologically speaking, if we

identify (x, y) with x + iy .
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This discussion starts at the very beginning, so parts of this section will be review. First

we recall a crucial property of the real number system, often taken as an axiom in real

analysis classes.

Definition 7.1. A set X ⊂ R is said to be bounded above if there is a number M ∈ R
such that x ≤ M for all x ∈ X.

7.2 (Least Upper Bound Axiom). If a nonempty set X ⊂ R is bounded above then there

exists a number supX such that

• x ≤ supX for all x ∈ X; and

• if x ≤ M for all x ∈ X then supX ≤ M.

The number sup x is called the least upper bound for X.

If X ⊂ R is nonempty and bounded below then, applying the least upper bound property

to {−x | x ∈ X} it is easy to see that X has a greatest lower bound inf X. Moreover,

if X ⊂ R and Y ⊂ R are both nonempty and x ≤ y for all x ∈ X and all y ∈ Y , then

supX ≤ inf Y .

Notation 7.3. We will use the following notation.

• If x = (x1, . . . , xm) ∈ Rm then |x | =
√
x21 + · · · x2m, so |x − y | is the the distance

from x to y .

• For x ∈ Rm, the ball of radius r about x is the set Bx(r) = {y ∈ Rm | |y−x | < r}.

Definition 7.4. We say a sequence (xn) in Rm converges to x when

• for every ε > 0 there exists an integer N such that |x − xn| < ε for all n ≥ N.

In other words, we say xn → x∞ as n → ∞ if the ball Bx∞(ε) contains a tail of the

sequence (xn) for every ε > 0.

Definition 7.5. By a box in Rm we mean a set of the form [a1, b1]×· · ·× [am, bm]. Thus a

box in R is a closed interval and a box in R2 is a rectangle. Two boxes [a1, b1]×· · ·×[am, bm]

and [c1, d1]×· · ·×[dm, dm] in Rm are similar if there is a scale factor α such that |bi−ai | =

α|di − ci | for i = 1, . . . m. The diameter of the box B = [a1, b1] × · · · × [am, bm] is the

number Diam(B) = |(b1 − a1, . . . , bn − an)|. (Note that if x and y are two points in B

then |x − y | ≤ Diam(B).) By the interior of the box [a1, b1]× · · · × [am, bm] we will mean

the open set (a1, b1)× · · · × (am, bm), which might be empty.

Proposition 7.6. A nested sequence of boxes has a nonempty intersection. That is, if

(Bn) is a sequence of boxes in Rm with B1 ⊃ B2 ⊃ · · · then
⋂∞
n=1Bn is a nonempty box.
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Proof. First we prove this for R = R1. Here each Bn is a closed interval; let Bn = [an, bn].

Then the nestedness condition translates to a1 ≤ a2 ≤ · · · and b1 ≥ b2 ≥ · · · . Let

a = sup{an | n ∈ N} and b = inf{bn | n ∈ N}. Then we have an ≤ a ≤ b ≤ bn for all

n ∈ N, and hence [a, b] ⊂ [an, bn] for all n. Moreover, if x ∈ ⋂∞1 [an, bn] then x ≥ a and

x ≤ b. Thus
⋂∞
n=1[an, bn] = [a, b], which is a nonempty interval (possibly just a point).

The argument for Rm is the same for all m > 1. To keep the notation simple we will just

give it for m = 2. Suppose that Bn = [an, bn] × [cn, dn]. Then ([an, bn]) and ([cn, dn])

are nested sequences of intervals. Let
⋂∞
n=1[an, bn] = [a, b] and

⋂∞
n=1[cn, dn] = [c, d ]. It is

easy to check that
⋂∞
n=1Bn = [a, b]× [c, d ], which is nonempty. �

Definition 7.7. A set U ⊂ Rm is said to be open if it has the following property:

• For every point x of U there exists ε > 0 such that Bx(ε) ⊂ U.

A set C ⊂ Rm is said to be closed if its complement Rn − C is open. Notice that ∅ and

Rm are both open and closed.

Lemma 7.8. Suppose X ⊂ Rm and f : X → Rn is continuous. Let U be an open set in

Rn. Then there exists an open set fU in Rm such that f −1(U) = X ∩ fU.

Proof. First fix x ∈ X. There exists ε > 0 such that Bε(f (x)) ⊂ U. By the definition of

continuity there exists δ > 0 such that f (X∩Bδ(x)) ⊂ Bε(f (x)) ⊂ U. Define Bx = Bδ(x).

We then have Bx ∩X ⊂ f −1(U).

Now define fU =
⋃{Bx | x ∈ f −1(U)}. We have

f −1(U) ⊂ X ∩ fU = X ∩
⋃

x∈f −1(U)
Bx =

⋃
x∈f −1(U)

X ∩ Bx ⊂ f −1(U).

Thus f −1(U) = X ∩ fU. �

Connectedness. At the beginning of the course we defined an open set to be connected

if any two points of the set can be joined by a polygonal path. Of course this definition

does not make much sense for sets which are not open. For example, the circle does not

meet this condition.

Now we will replace our older definition with a more abstract one that can be used for

arbitrary subsets of Rm. Eventually we will see that the two definitions are equivalent for

open sets.

From now on, we use the following.

Definition 7.9. A subset X ⊂ Rm is disconnected if there exist two open sets U and V

such that

• X ⊂ U ∪ V ,
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• X ∩ U 6= ∅,
• X ∩ V 6= ∅,
• X ∩ U ∩ V = ∅.

The pair of sets U and V are called a separation of X. If X is not disconnected then we

say X is connected. That is, X is connected if it has no separation.

It is easy to check that an open set is disconnected if and only if it can be written as the

union of two disjoint nonempty open subsets.

The next proposition shows that an open set which satisfies our new definition also satisfies

the old one. As a point of logic, notice that this proposition does not show that the

definitions are the same. In fact, it allows the possibility that no open sets are connected

under the new definition. (Of course this is not true, but we haven’t ruled it out yet.)

Proposition 7.10. If O is a connected open set in Rm then any two points of O can be

joined by a polygonal path.

Proof. We may as well assume that O is nonempty since there is nothing to prove if

O = ∅. Let x ∈ O. Define U to be the collection of all points of O which can be joined

to x by a polygonal path. If y ∈ U then Bε(y) ⊂ O for some ε > 0. Every point z of

Bε(y) can be joined to y by a line segment L which is contained in Bε(y). By adding L

on the end of a polygonal path from xto y we get a polygonal path from x to z . This

shows that Bε(y) ⊂ U, so U is open. Now define V to be the collection of all points of O

which cannot be joined to x by a polygonal path, so X = U ∪ V and U ∩ V = ∅. Suppose

y ∈ V and Bε(y) ⊂ O. If there exists a point z of Bε(y) which can be joined to X by

a polygonal path then we could append to this path a line segment from z to y inside

Bε(y). This would contradict y ∈ V . Therefore V is open. Now since O is connected,

one of sets U and V must be empty, and we know that x ∈ U. Therefore we conclude

that V = ∅, so O = U. This completes the proof. �

We should start by showing that there really are some sets which are connected with our

new definition.

Proposition 7.11. Any interval in R (open, closed, half-open, or infinite) is connected.

Proof. Let I be an interval in R and suppose, for contradiction, that U and V form a

separation of I. Let x ∈ I ∩ U and y ∈ I ∩ V . We may assume x < y . (Otherwise

rename U and V .) Thus {t ∈ I | [x, t] ⊂ U} is bounded above, and we may define

z = sup{t ∈ I | [x, t] ⊂ U}.

If z ∈ U then there exists ε > 0 such that Bε(z) ⊂ U. Also, there exists t ∈ (z − ε, z ]

such that [x, t] ⊂ U. Thus [x, z + ε] = [x, t] ∪ [t, z + ε] ⊂ U, which is a contradiction

since z = sup{t ∈ I | [x, t] ⊂ U}.
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If z ∈ V then there exists ε > 0 such that Bε(z) ⊂ V . This implies that sup{t ∈
I | [x, t] ⊂ U} ≤ z − ε < z , which is again a contradiction.

Since z ∈ I ⊂ U∪V , we have a contradiction, and there can not be a separation of I. �

Proposition 7.12. If X ⊂ Rm is connected and f : X → Rn is continuous then f (X) is

connected.

Proof. We will prove the contrapositive. Suppose that f (X) is disconnected. Let U and

V be open sets in Rn which form a separation of f (X). According to Lemma 7.8 there

are open sets fU and f V such that f −1(U) = X ∩ fU and f −1(V ) = X ∩ f V .

We have X = f −1(U)∪f −1(V ) ⊂ fU∪ f V . Since ∅ 6= f −1(U) ⊂ fU and ∅ 6= f −1(V ) ⊂ f V ,

we have X ∩ fU 6= ∅ and X ∩ f V 6= ∅. Finally, X ∩ fU ∩ f V ⊂ f −1(U)∩ f −1(V ) = ∅. Thus
fU and f V form a separation of X. �

Corollary 7.13. A line segment in Rm is connected.

Proposition 7.14. Suppose that C is a collection of connected sets in Rm such that⋂ C 6= ∅. Then
⋃ C is connected.

Proof. Let us write X =
⋃ C and choose x ∈ ⋂ C. Suppose, for contradiction, that U and

V form a separation of X. We may assume that x ∈ U.

Since V ∩ X 6= ∅, there is an element y ∈ V ∩ X. Since X =
⋃ C, we have y ∈ C for

some C ∈ C. We also have x ∈ ⋂ C ⊂ C. Thus x ∈ U ∩ C and y ∈ V ∩ C, which shows

that C ∩ U and C ∩ V are nonempty.

Since U and V form a separation of X we also have C ⊂ X ⊂ U ∪ V and C ∩ U ∩ V ⊂
X ∩ U ∩ V = ∅. But this shows that U and V form a separation of C, which is a

contradiction since C is connected. �

Corollary 7.15. Balls and boxes are connected subsets of Rm.

Finally, the next corollary shows that our two definitions of connected open sets are

equivalent.

Corollary 7.16. If X ⊂ Rm is a subset such that any two points of X can be joined by a

polygonal path, then X is connected.

The next Proposition implies that any open set is a union of domains.

Proposition 7.17. Let X ⊂ Rm. Define a relation on X by x ∼ y if x and y are contained

in a connected subset of X. Then ∼ is an equivalence relation and the equivalence classes

are connected.
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Proof. The transitive property of ∼ is the only one which is not obvious. But this follows

from Proposition 7.14: if x ∼ y and y ∼ z then there are connected subsets A and B

of X such that x, y ∈ A and y , z ∈ B. By Proposition 7.14, A ∪ B is a connected set

containing all three points, so x ∼ z . Since the equivalence class [x ] of x ∈ X is the union

of all connected subsets of X which contain x , it is connected by Proposition 7.14. �

The equivalence classes for the relation above are called the connected components of

X. They are disjoint connected sets whose union is X.

Corollary 7.18. Any open set in Rn is a disjoint union of domains.

Compactness. We start with two definitions.

Definition 7.19. Suppose X ⊂ Rn. A collection U of open sets is called an open cover

of X if X ⊂ ⋃U . If U is an open cover of X and U ′ ⊂ U is also an open cover of X, then

U ′ is called a subcover of U .

Definition 7.20. A set K ⊂ Rm is said to be compact if every open cover of K has a

finite subcover. That is, given any collection U with K ⊂ ⋃U there are finitely many

open sets U1, · · · , Un ∈ U such that K ⊂ ⋃ni=1 Ui .
Proposition 7.21. All compact sets in Rm are closed.

Proof. Suppose K is compact and y ∈ Rm. For every x ∈ K set rx = |x − y |/2 and

Ux = Bx(rx). Then U = {Ux | x ∈ K} is an open cover of K such that Ux ∩ Brx (y) = ∅
for all Ux ∈ U . Since K is compact, there is a finite subcover {Ux1, . . . , UxN}. Set

r = min{rx1, . . . , rxN}. Then Br(y) ∩ Uxn = ∅ for n = 1, . . . , N. Since K ⊂ ⋃N
n=1 Uxn we

have

Br(y) ∩K ⊂ Br(y) ∩
(

N⋃
n=1

Uxn

)
⊂

N⋃
n=1

(K ∩ Uxn) = ∅.

Thus there is a ball centered at y which is contained in the complement of K. This shows

that Rm −K is open, so K is closed. �

Definition 7.22. A set X ⊂ Rn is said to be bounded if X ⊂ BR(0) for some R > 0. A

sequence (xn) of points in Rn is said to be bounded if there is a ball BR(0) which contains

each term xn. Equivalently, X is bounded if X is contained in a box, and (xn) is bounded

if there is a box containing all of the terms xn.

Proposition 7.23. All compact sets in Rm are bounded.
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Proof. Suppose K ⊂ Rm is compact. We will show that there is a positive integer R such

that K is contained in the ball of radius R centered at 0. We let U = {Bn(0) | n ∈ N}.
Since

⋃U = Rm, U is certainly an open cover of K. Since K is compact there is a finite

subcover {Bn1(0), . . . BnN(0)}. Let R = max{n1, . . . , nN}. Then we have

K ⊂ Bn1(0) ∪ · · · ∪ BnN(0) = BR(0),

as claimed. �

Our next goal is to show that every closed and bounded subset of Rm is compact. For

this we formulate a lemma about boxes that we will be able to use in several different

contexts. The lemma encapsulates an argument known as the “method of bisection.”

Suppose that B is a box in Rm. By a subdivision of B we mean a collection of boxes

B1, . . . BN such that B = B1 ∪ · · · ∪ BN and such that the interior of Bi is disjoint from

the interior of Bj whenever i 6= j . For any subdivision the volume of B is the sum of the

volumes of the boxes Bn for n = 1, . . . N.

One simple method for subdividing a box is as follows. Suppose we are given B =

[a1, b1] × · · · [am, bm]. For each n = 1, . . . , m, let cn = (an + bn)/2 denote the midpoint

of the interval [am, bm]. Then there are 2m boxes of the form I1 × · · · × Im where, for

n = 1, . . . , m, In is either the interval [an, cn] or the interval [cn, bn]. Each of these smaller

boxes is contained in B, each is similar to B, their union is equal to B, and the sum of

their volumes is equal to the volume of B. We will say that this family of 2m boxes is the

midpoint subdivision of B.

Lemma 7.24 (Bisection Lemma). Let B be a box in Rm. Suppose that G is a collection

of boxes which are contained in B and are similar to B, with the following property:

(?) for any x ∈ B there exists ε > 0 such that if X is a box similar to B with

x ∈ X ⊂ B and Diam(X) < ε then X is an element of G.

Then there is a subdivision of B into boxes which are all in the family G.

Proof. Let’s say that a box contained in B is good if it is in the collection G, and bad

otherwise.

We will construct a sequence (Sn) of subdivisions of B inductively. We start with S1 =

{B}. For the inductive step, if Sn has been defined then we define Sn+1 to be the

subdivision obtained from Sn by replacing each bad box X in Sn by the 2m boxes obtained

by midpoint subdivision of X. Since midpoint subdivision of a box produces similar boxes,

all of the boxes in each Sn are similar to B.

If, for some n, all of the boxes in Sn are good then the lemma is proved. Therefore we

assume for a contradiction that each Sn contains a bad box.
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Since any bad box in Sn must have been produced by midpoint subdivision of a bad box

in Sn−1, there is a sequence of bad boxes

B = X1 ⊃ X2 ⊃ X3 · · ·

such that Diam(Xn+1) = 1
2

Diam(Xn). In particular, this means that Diam(Xn) → 0 as

n →∞.

Now Proposition 7.6 tells us that there is a point x ∈ B which is contained in the

intersection of all of the bad boxes Xn. By our hypothesis there exists ε > 0 such that

any box which contains x and has diameter less than ε is good. But we can easily find N

so that Diam(XN) = 2−N Diam(B) < ε. The box XN must therefore be good, which is a

contradiction.

The contradiction shows that for some n the subdivision Sn contains only good boxes,

which completes the proof. �

Theorem 7.25 (Heine-Borel). A closed and bounded subset of Rm is compact.

Proof. Let K ⊂ Rm be closed and bounded, and let U be an open cover of K.

Since K is bounded, there is a box B containing K. Let G be the collection of all boxes

X ⊂ B which are similar to G and satisfy X ∩K ⊂ U for some U ∈ U . We will check that

condition (?) of the Bisection Lemma 7.24 holds for this family G. Let x ∈ B be given.

There are two cases, according to whether x ∈ K or not.

If x ∈ K then, since U is an open cover of K, there exists U ∈ U which contains x .

Since U is open, there exists ε > 0 such that Bε(x) ⊂ U. If X is a box with x ∈ X and

Diam(X) < ε then |x − y | < ε for all y ∈ X, so X ∩K ⊂ Bε(x) ⊂ U.

If x /∈ K then, since K is closed, there exists ε > 0 such that Bε(x) ∩ K = ∅. If X is a

box with x ∈ X and Diam(X) < ε then X ∩ K ⊂ Bε(x) ∩ K = ∅, so X ∩ K is contained

in every set U in U .

This shows that (?) holds. Now by the Bisection Lemma we may subdivide B into boxes

X1, . . . , XN where each Xn is in G, which means that K ∩ Xn ⊂ Un for some Un ∈ U .

Thus

K = K ∩ B = K ∩
(

N⋃
n=1

Xn

)
=

N⋃
n=1

(K ∩Xn) ⊂
N⋃
n=1

Un.

This shows that {U1, . . . , UN} is a finite subcover of U . �

Next we will show that every bounded sequence of points in Rm has a subsequence which

converges. The proof uses the following lemma.

Lemma 7.26. Let (xn) be a sequence of points of Rn. Suppose x ∈ Rn has the following

property:
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• for every ε > 0 there are infinitely many n ∈ N such that xn ∈ Bε(x).

Then there is a subsequence (xnk ) which converges to x .

Proof. We will define the subsequence by induction in such a way that xnk ∈ B1/k(x).

Then it is clear that xnk → x as k →∞.

Since B1(x) contains xn for infinitely many values of n, we may choose n1 so xn1 ∈ B1(x).

For the induction step, suppose xn1, . . . , xnN have been defined so that xnk ∈ B1/k(x) for

k = 1, . . . , N. Since B1/(N+1)(x) contains xn for infinitely many n we may choose nN+1

so that nN+1 > nN and xnN+1 ∈ B1/(N+1)(x). This completes the proof. �

Theorem 7.27 (Bolzano-Weierstrass). Any bounded sequence of points in Rm has a

convergent subsequence.

Proof. Suppose for a contradiction that (xn) is a bounded sequence with no convergent

subsequence. Since (xn) is bounded there is a box B containing all of the terms xn.

According to Lemma 7.26, for each x ∈ B there exists ε > 0 such that Bε(x) contains xn

for at most a finite number of n ∈ N. This means that if X is a box with x ∈ X ⊂ B and

Diam(X) < ε then there are only finitely many n ∈ N such that xn ∈ X. Thus condition

(?) of the Bisection Lemma 7.24 holds if we define G to be the collection of all boxes

X ⊂ B such that X is similar to B and there are only finitely many n ∈ N such that

xn ∈ X. According to the Bisection Lemma we may therefore subdivide B into finitely

many boxes in G. Each of these boxes contains xn for only finitely many n ∈ N, yet their

union is all of B, which contains xn for all n ∈ N. That absurd statement gives us the

contradiction. �

Proposition 7.28. If K ⊂ Rm is compact and f : K → Rn is continuous then f (K) is

compact.

Proof. Let U be an open cover of f (K). By Lemma 7.8, for each U ∈ U there exists an

open set fU ⊂ Rm such that f −1(U) = K ∩ fU.

Consider the family of open sets f U = {fU | U ∈ U}. We have

K = f −1(f (K)) = f −1(∪ U) =
⋃
U∈U

f −1(U) =
⋃
U∈U

(K ∩ fU) ⊂
⋃
U∈U

fU.

Thus f U is an open cover of K. Since K is compact, there exist U1, . . . , UN ∈ U such

that {fU1, . . . , fUN} is a subcover of f U .

Now we have

f (K) =
N⋃
i=1

f (K ∩ fU i) =
N⋃
i=1

f (f −1(Ui) ⊂
N⋃
i=1

Ui .

Thus {U1, . . . , UN} is a finite subcover of U . �
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8. Cauchy’s Theorem for a rectangle

Next we will consider a contour integral around the simplest possible closed zigzag, namely

the boundary of a rectangle. If R is a rectangle, we will denote by ∂R the zigzag consisting

of the four segments on the boundary of R, oriented counter-clockwise.

Theorem 8.1 (Cauchy-Goursat). Suppose that f (z) is analytic in a domain Ω containing

a rectangle R. Then ∫
∂R
f (z)dz = 0.

Proof. We begin by describing the overall strategy of our proof. Rather than show directly

that
∫
∂R f (z)dz = 0, we will instead prove the equivalent statement that, for any ε > 0,

(??)

∣∣∣∣∫
∂R
f (z)dz

∣∣∣∣ < εArea(R).

(Since Area(R) is a fixed number, this statement implies that the integral is arbitrarily

close to 0, and hence cannot equal any number different from 0.) Suppose now that we

are given ε > 0.

To prove inequality (??) we will use the Bisection Lemma 7.24 to subdvide R into finitely

many rectangles R1, . . . RN, all similar to R, such that the following three properties hold:

(1)
N∑
i=1

Area(Ri) = Area(R);

(2)
N∑
i=1

∫
∂Ri

f (z)dz =
∫
∂R
f (z)dz ;

(3)
∫
∂Ri

f (z)dz ≤ εArea(Ri) for each i = 1, . . . , N.

It is clear that these three properties imply (??).

When we apply the Bisection Lemma we will take the family G of “good” rectangles to

contain all rectangles R′ ⊂ R, similar to R, such that
∫
∂R′ f (z)dz ≤ εArea(R′). Of

course, to apply the lemma we must verify that property (?) in the statement of Lemma

7.24 holds for this family G.
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However, before checking property (?), we pause to observe that if it does hold then

inequality (??) holds. In other words, we are asserting that Properties (1)-(3) must hold

for the family of rectangles which are produced by the Bisection Lemma. Property (1) is

clear for any subdivision of the rectangle R. Property (3) is also clear, given our definition

of G. But Property (2) requires some work. We may rewrite
∑N
i=1

∫
∂Ri
f (z)dz as a sum of

contour integrals whose contour runs along one side of one of the subrectangles. Observe

that for each side which is contained in the interior of R, there are exactly two integrals

in the sum, and the contours used for these two integrals run across that side in opposite

directions. These two contour integrals therefore cancel. (In the figure below, each

segment with two arrowheads corresponds to one such cancellation.) This leaves only

the contours corresponding to line segments contained in the boundary of R. Since the

union of these segments is the entire boundary of R, and since each of these contours is

oriented consistently with the orientation of ∂R, this implies (2). Thus all that remains

is to verify that G satisfies the property (?).

Next we will use Proposition 5.1 to to estimate
∫
∂R′ f (z)dz for a rectangle R′ which is

contained in R and similar to R. The purpose of this estimate is to find a condition on

f that will guarantee that the rectangle R′ is in G. This is the point in the proof where

we use the fact that f is analytic, and this will be the first application of Lemma 7.24

where the similarity condition is important. Let α ≤ 1 be the aspect ratio of R, that is,

the length of the two shorter sides of R divided by the length of the two longer sides.

Since every rectangle R′ is similar to R, the aspect ratio of R′ is also equal to α. Let

us suppose that our rectangle R′ has sides of length s and αs. Then the length of the

contour ∂R′ is (2 + 2α)s, and the area of R′ is αs2.

If we apply Proposition 5.1 in a naive way we will not be able to show that R′ is in G, since

that estimate only gives a bound which is proportional to the length of ∂R′ and we need

one which is proportional to the area of R′. But the Fundamental Theorem of Calculus

comes to our rescue here. Choose any point w ∈ R′. Since f ′(w) exists, we may write,

for all z ∈ R′,
f (z) = f (w) + f ′(w)(z − w) + Ew(z)(z − w)
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where Ew(z) → 0 as z → w . Since the linear function L(z) = f (w) + f ′(w)(z − w)

obviously has an antiderivative, the Fundamental Theorem of Calculus tells us that its

integral around any closed contour must be 0. Therefore we have∫
∂R′
f (z)dz =

∫
∂R′
f (w) + f ′(w)(z − w)dz +

∫
∂R′
Ew(z)(z − w)dz

=
∫
∂R′
Ew(z)(z − w)dz.

Now we can apply Proposition 5.1 to the integral of Ew(z)(z−w) . We know that |z−w |
can not be larger than the diameter of R′, which in turn is at most

√
2s. Thus if we knew

that |Ew(z)| < M for all z ∈ R′ we could conclude that∣∣∣∣∫
∂R′
f (z)dz

∣∣∣∣ ≤ M(
√

2s)(2s + 2αs) = M

(√
2(2 + 2α)

α

)
Area(R′) = kM Area(R′),

where we define k to be the constant
√
2(2+2α)
α

. In particular if M = ε/k we could conclude

|
∫
∂R′ f (z)dz | ≤ εArea(R′). Thus we have shown:

• For any w ∈ R, if R′ is a rectangle similar to R with w ∈ R′ ⊂ R and if

|Ew(z)| ≤
ε

k
for all z ∈ R′, then R′ is in G.

Since Ew(z) → 0 as z → w , there exists δ > 0 such that |z − w | < δ ⇒ Ew(z) < ε/k .

Therefore, if w ∈ R′ ⊂ R, where R′ is similar to R and Diam(R′) < δ, then it follows

from the statement above that R′ is in G. This verifies that property (?) in Lemma 7.24

holds for G, and completes the proof. �
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