Midterm Exam – Math 446 – Spring 2010

Do at least 5 of the following problems. Specify which ones should be counted (at 20 points each) for the exam score.

- **1.** Let X be a topological space. Let $\Delta = \{(x, x) \mid x \in X\}$ be the "diagonal" in $X \times X$. Prove that X is Hausdorff if and only if Δ is closed.
- **2.** Suppose that A is a connected subspace of a space X. Suppose that $A \subset B \subset \overline{A}$. Prove that B is connected.
- **3.** Prove that the continuous image of a compact space is compact.
- 4. Let $f : X \to Y$ be a surjective continuous map from a topological space X to a topological space Y. Show that if f is open then it is a quotient map. Give an example of a quotient map which is not open.
- 5. Let A be a subspace of a metric space X. Prove that every limit point of A is the limit of a convergent sequence of points of A.
- **6.** Prove that there is no continuous surjection from [0, 1] to (0, 1).
- 7. Let X be a connected space and $f : X \to X$ be a continuous map. Suppose that every point $x \in X$ has a neighborhood U such that either:
 - the restriction $f|_U$ is the identity map of U; or
 - $f(U) \cap U = \emptyset$

Prove that if f has a fixed point then f must be the identity map of X.

- 8. Let \mathbb{Z} act on $\mathbb{C}^* \doteq \mathbb{C} \{0\}$ by $n \cdot z = 2^n z$. Prove that the quotient space \mathbb{C}^*/\mathbb{Z} is homeomorphic to the torus $S^1 \times S^1$. Show that, with the same action, \mathbb{C}/\mathbb{Z} is not Hausdorff.
- 9. Prove that the product of two connected spaces is connected.
- **10.** Suppose that A and B are disjoint closed sets in a compact Hausdorff space X. Show there exist disjoint open sets U and V with $A \subset U$ and $B \subset V$.