Problem Set #4 - due Friday, September 16

- 1. Let \mathbb{R}^{∞} denote the direct product of countably many copies of \mathbb{R} (i.e. the set of all realvalued sequences), and let P and B denote the topological spaces obtained by giving \mathbb{R}^{∞} the product and box topologies, respectively.
 - (a) Let $f : X \to \mathbb{R}^{\infty}$ be a function from a topological space X to the product \mathbb{R}^{∞} . Show that if f is continuous when regarded as a function from X to B then it is also continuous when regarded as a function from X to P.
 - (b) Give an example of a function $f : \mathbb{R} \to \mathbb{R}^{\infty}$ that is continuous as a function from \mathbb{R} to P but is not continuous as a function from \mathbb{R} to B.

Math 445 – Fall 2011

2. Consider the six topologies on the set of real numbers: \mathbb{R} , \mathbb{R}_d , \mathbb{R}_t , \mathbb{R}_{fc} , \mathbb{R}_{cc} , \mathbb{R}_l . Which of these has a countable basis?

- **3.** Let *A* be a subspace of the topological space *X*.
 - (a) Show that if $f : X \to Y$ is continuous then $f|_A : A \to Y$ is also continuous, where $f|_A$ denotes the restriction of f to A.
 - (b) Give an example of a continuous function $f : (0, 1) \to \mathbb{R}$ which is not the restriction of any continuous function from [0, 1] to \mathbb{R} .

Name: __

- **4.** Let \mathcal{T} be the smallest topology on the set of real numbers with the property that every subset of the rational numbers is open. Let X denote the space consisting of the set of real numbers with the topology \mathcal{T} .
 - (a) Is ${\mathcal T}$ the discrete topology?
 - (b) Find all continuous functions from X to \mathbb{R} , where \mathbb{R} denotes the usual topology on the real numbers.

5. Consider a line in the plane, with the topology that it inherits as a subspace of the product space ℝ × ℝ_I. Describe (up to homeomorphism) all of the different topological spaces that occur as subspaces of this type.