Problem Set #5 - due Monday, September 26

1. Prove that the dictionary order topology on $\mathbb{R} \times \mathbb{R}$ is the same as the product topology on $\mathbb{R}_d \times \mathbb{R}$.

2. Let X be a linearly ordered set with the order topology. For $x, y \in X$, if x < y and $(x, y) = \emptyset$ then we will say that x is the *predecessor* of y and y is the *successor* of x. Prove that $\overline{(a, b)} = [a, b]$ if and only if a has no successor and b has no predecessor. **3.** Let X and Y be topological spaces and let $x_0 \in X$. Prove that the function $f : Y \to X \times Y$ given by $f(y) = (x_0, y)$ is a homeomorphism from Y to the subspace f(Y).

- **4.** Let Y be a linearly ordered set with the order topology and let $f : X \to Y$ and $g : X \to Y$ be continuous.
 - (a) Prove that $\{x \mid f(x) \leq g(x)\}$ is a closed subset of X.
 - (b) Prove that the function $h: X \to Y$ given by $h(x) = \min\{f(x), g(x)\}$ is continuous

5. Let P and B denote the topological spaces obtained by giving the countable product of copies of \mathbb{R} the product and box topologies, respectively. Let S be the subset of this product consisting of all points for which all but finitely many of the coordinates are 0. Find the closure of S in P and in B.