Name: _

Problem Set #6 - due Friday, October 7

For $n \ge 0$ we define the *n*-disk D^n and the *n*-sphere S^n by

- $D^n = \{ v \in \mathbb{R}^n : ||v|| \le 1 \}$; and $S^n = \{ v \in \mathbb{R}^{n+1} : ||v|| = 1 \}$

topologized as a subspace of the Euclidean space containing them. (We interpret \mathbb{R}^0 to mean the singleton $\{0\}$, where ||0|| = 0.)

1. Let \sim be the equivalence relation on D^n , n > 0, generated by the relation $x \sim y$ for all $x, y \in S^{n-1}$. (That is, all points of S^{n-1} are identified to one point.) Prove that D^n/\sim is homeomorphic to S^n .

- **2.** Let $X = \{0, 1\} \times \mathbb{R}$, where $\{0, 1\}$ has the discrete topology. Let \sim be the equivalence relation on X generated by the relation $(0, x) \sim (1, x)$ for all $x \in (0, 1)$.
 - (a) Show that X is Hausdorff, but X/\sim is not.
 - (b) Show that there are exactly two pairs of points in X/\sim which do not have the Hausdorff separation property.

- **3.** Let *S* be the strip $\mathbb{R} \times [0, 1]$, topologized as a subspace of \mathbb{R}^2 . Let \mathbb{Z} act on *S* by $n \cdot (x, y) = (nx, y)$. Let $B = [0, 1] \times [0, 1] \subset S$.
 - (a) Show that the quotient space S/\mathbb{Z} is homeomorphic to the annulus $A = \{z \in \mathbb{C} : 1 \le |z| \le 2\}$. Give an explicit quotient map $q : S \twoheadrightarrow A$.
 - (b) Show that the restriction of q to B is a closed map, and hence a quotient map. (Suggestion: use the theorem from analysis that a bounded sequence in \mathbb{R}^2 has a convergent subsequence.)
 - (c) Give an example of a subspace $Y \subset S$ such that the restriction of q to Y is surjective, but is not a quotient map.

- **4.** Let $X = \{0, 1\} \times D^2$, where $\{0, 1\}$ has the discrete topology.
 - (a) Let ~ be the equivalence relation generated by the relation $(0, \theta) \sim (1, \theta)$ for all $\theta \in S^1$. Show that X/\sim is homeomorphic to S^2 .
 - (b) Let $f : S^1 \to S^1$ be a homeomorphism, and let \sim be the equivalence relation generated by the relation $(0, \theta) \sim (1, f(\theta))$ for all $\theta \in S^1$. Show that X/\sim is homeomorphic to X/\sim , and hence that both spaces are homeomorphic to S^2 .