NOTES ON TOPOLOGY

Marc Culler - Spring 2011

1. Cells and spaces

We let $D^n = \{(x_1, \ldots, x_n) \mid x_1^2 + \cdots + x_n^2 \leq 1\}$ denote the closed unit disk in \mathbb{R}^n and $S^n = \{(x_1, \ldots, x_n) \mid x_1^2 + \cdots + x_n^2 = 1\}$ denote its boundary, the unit sphere in \mathbb{R}^n . (It is a fact that any homeomorphism from D^n to itself must map S^{n-1} to itself. We have not proven this, but we will assume it for now.)

Definition 1.1. A space homeomorphic to D^n is called an n-cell. If C is an n-cell then the boundary of C is the image of the (n-1)-sphere under a homeomorphism from D^n to C. By the assumption mentioned above, this is a well-defined subset of C, which we denote by ∂C .

Next we will define a class of spaces which includes almost all of the spaces that we will encounter in this course.

Definition 1.2. Suppose that X is a topological space. We will say that Y is obtained from X by *attaching n-cells* if there exist

- (1) a family C of disjoint n-cells C disjoint from X; and
- (2) for each $C \in \mathcal{C}$ a map $\alpha_C : \partial C \to X$,

such that Y is homeomorphic to the quotient space $(\sqcup \mathcal{C} \sqcup X)/\sim$, where \sim is the equivalence relation generated by the relation $x \sim \alpha_c(x)$ for all $x \in \partial \mathcal{C} \in \mathcal{C}$. The map $\alpha_{\mathcal{C}}$ is called the *attaching map* for \mathcal{C} .

If Y is obtained from X by attaching n-cells then X is homeomorphic to a subspace of Y. Moreover, for each $C \in \mathcal{C}$, the restriction $q_C : C \to Y$ of the quotient map is called the characteristic map of C. We have that $q_C|_{\partial C} = \alpha_C$ and q_C is an embedding of $C - \partial C$ into X. Note, however, that q_C is not necessarily injective on ∂C .

Definition 1.3. A 0-dimensional CW-complex is a disjoint union of 0-cells. For n > 0, a space X is an n-dimensional CW-complex if X is obtained by attaching n-cells to an (n-1)-dimensional CW-complex.

Date: March 16, 2011.

If X is an n-dimensional CW-complex then there are subspaces

$$X^{(0)} \subset X^{(1)} \subset \cdots \subset X^{(n)} = X$$

such that each $X^{(k)}$ is a k-dimensional CW-complex and, for each k > 0, $X^{(k)}$ is obtained from $X^{(k-1)}$ by attaching k-cells. The space $X^{(k)}$ is called the k-skeleton (determined by the CW-complex structure) of X. Of course, for most spaces X there are many different ways to describe X as a CW-complex, with different skeleta.

Exercise 1.1. Show that the circle is a CW-complex.

Exercise 1.2. Show that any triangulated 2-manifold is a CW-complex.

2. Connectedness

Definition 2.1. A space X is said to be *path-connected* or 0-connected when each pair of points of X can be joined by a path. Equivalently, we could define X to be 0-connected if every map $f: S^0 \doteq \{0, 1\} \to X$ can be extended to a map $\hat{f}: D^1 \doteq [0, 1] \to X$.

A space X is said to be *simply connected*, or 1-connected if it is path-connected and every map from the circle S^1 to X extends to a map from D^2 to X.

Continuing inductively for n > 1, we say that X is n-connected if it is (n-1)-connected and every map from S^n to X extends to a map from D^{n+1} to X.

We describe here two basic methods for verifying that a space is *n*-connected.

Proposition 2.2. A convex subspace of \mathbb{R}^n is m-connected for all $m \geq 0$.

Proof. Let X be a convex subspace of \mathbb{R}^n . Let $f:S^n\to X$ be a map. Choose any point $P\in X$. Every point x in D^n can be written as x=tv for some $v\in S^{n-1}$, and v is uniquely determined unless x=0. (In fact, the disk D^n is the quotient space of $[0,1]\times S^n$ under the equivalence relation generated by setting $(0,v)\sim (0,v')$ for all $v,v'\in S^n$. We define $\hat{f}:[0,1]\times S^n$ by $\hat{f}(tv)=(1-t)P+tf(v)$. Since \hat{f} is constant on equivalence classes, it descends to a map $\hat{f}:D^n\to X$ which is an extension of f.

Exercise 2.1. Prove that \mathbb{R}^n is m-connected for all m > 0.

Exercise 2.2. Prove that D^n is m-connected for all $m \ge 0$.

We can generalize the argument above to many more situations.

Definition 2.3. Let X be a topological space and P a point in X. We say that X is contractible to P if there exists a continuous function $H: X \times [0,1] \to X$ such that

- H(x, 0) = x for all $x \in X$;
- H(x, 1) = P for all $x \in X$.

(Here $X \times [0,1]$ has the product topology, of course.) We call H a contraction of X to P.

Exercise 2.3. Prove that if X is contractible to $P \in X$ then X is m-connected for all $m \ge 0$.

Exercise 2.4. Suppose that X is contractible to $P \in X$. Show that X is also contractible to $Q \in X$ for any $Q \in X$.

In view of Exercise 2.4 we will simply say that X is contractible if X is contractible to some (and hence any) point $P \in X$.

However, it is important to realize that when a space X is contractible to a point $P \in X$, it may not be possible to find a contraction which keeps the point P fixed.

Exercise 2.5. Give an example of a space X and a point $P \in X$ such that X is contractible to P, but there does not exist a contraction $H: X \times [0,1] \to X$ with the property that H(P,t) = P for all $t \in [0,1]$.

Our next criterion for simple connectivity requires a lemma; people who have taken analysis will recognize this as a special case of Lebesgue's covering lemma.

Lemma 2.4. Let X be a topological space and \mathcal{U} an open cover of X. Let $\sigma: [0,1] \to X$ be continuous. Then there exist $0 = t_0 < t_1 < \cdots < t_n = 1$ such that, for each $i = 1, \ldots, n$, we have $f([t_{i-1}, t_i]) \subset U$ for some $U \in \mathcal{U}$.

Proof. We will prove this by the method of bisection. A list S of numbers t_i with $0 = t_0 < t_i < \cdots t_n = 1$ determines a *subdivision* of [0,1] into *subintervals* $[t_0,t_1],\ldots [t_{n-1},t_n]$. We will say that an interval $[a,b] \subset [0,1]$ is *good* if $f([a,b]) \subset U$ for some $U \in \mathcal{U}$. With this terminology, our goal is to show that there is a subdivision of [0,1] such that all of the subintervals are good. We will build this subdivision by successively dividing various subintervals in half.

Observe first that every number $t \in [0, 1]$ is contained in a good interval [a, b] for some a < t < b. In fact, if $f(t) \in U$, then t is contained in the interior of an interval that maps into U.

Next consider the following process, starting with the trivial subdivision S_o corresponding to $0 = t_0 < t_1 = 1$. Given a subdivision S_n of [0, 1],

- (1) if every subinterval of S_n is good, stop;
- (2) otherwise bisect each bad subinterval to form a new subdivision S_{n+1} .

If this process stops after finitely many steps we have produced a subdivision in which every subinterval is good. Thus we may assume, for contradiction, that this process can be repeated arbitrarily many times with a bad interval appearing at each stage. Observe that each bad interval is produced by bisecting a bad interval. Thus we obtain an infinite sequence of bad intervals $I_1 \supset I_2 \supset \cdots$ where the length of I_k is 2^{-k} . By the nested interval property, there exists $t \in \bigcap I_n$. But t is contained in a good interval [a, b] and, since the length of I_k is 2^{-k} , we have $I_k \subset [a, b]$ for all sufficiently large k. This is a contradiction, since it is clear that any subinterval of a good interval is good.

Exercise 2.6. Generalize Lemma 2.4 to the case of a continous map $H:[0,1]\times[0,1]\to X$.

Theorem 2.5. Suppose that a space X can be written as $X = U \cup V$ where U and V are simply-connected open sets and $U \cap V$ is path-connected. Then X is simply connected.

Proof. Choose a point $x \in U \cap V$. Let $f: S^1 \to X$ be a map. We will construct an extension of f to a map $\hat{f}: D^2 \to X$.

Note that S^1 can be realized as the quotient space of [0,1] under the equivalence relation generated by requiring $0 \sim 1$. In fact, the map $q:[0,1] \to S^1$ defined by $q(t)=(\cos(2\pi t),\sin(2\pi t))$ is a quotient map.

According to Lemma 2.4 there is a subdivision of [0,1] such that $q \circ f$ maps each subinterval entirely into U or entirely into V. Equivalently, we obtain a subdivision of the circle S^1 into arcs $\theta_1, \ldots, \theta_n = \theta_0$ such that for each $i = 1, \ldots, n$ we either have $f(\theta_i) \subset U$ or $f(\theta_i) \subset V$. Let $p_1, \ldots, p_n = p_0$ be the endpoints of these arcs, so that p_i is an endpoint of both θ_i and θ_{i-1} for each $i = 1, \ldots, n$. Observe that if f maps one arc into U and an adjacent arc into V then the common endpoint of the two arcs must map into $U \cap V$.

Next we consider radial line segments which runs from the origin to p_i . These segments subdivide the disk D^2 into *pizza slices*. A point on the segment from 0 can be uniquely described as tp_i for some $t \in [0, 1]$.

We first extend f to a map \tilde{f} defined on the union of S^1 with these radial segments. To define \tilde{f} on the radial segments, for each $i=1,\ldots n$ we choose a path ρ_i which runs from the point $x\in U\cap V$ to the point $f(p_i)$. We impose the following requirements on the paths ρ_i :

- if $f(\theta_{i-1}) \subset U$ and $f(\theta_i) \subset U$ then $f(\rho_i) \subset U$;
- if $f(\theta_{i-1}) \subset V$ and $f(\theta_i) \subset V$ then $f(\rho_i) \subset V$;
- otherwise, $f(\rho_i) \subset U \cap V$.

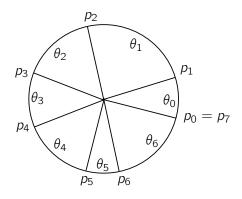


Figure 1.

The last requirement can be satisfied because, in that case, we have $f(p_i) \in U \cap V$ and we have assumed that $U \cap V$ is path-connected.

To finish the argument we observe that the map \tilde{f} has the property that the boundary of each pizza slice is either mapped entirely into U or entirely into V. Since a pizza slice is homeomorphic to D^2 , the simple-connectivity of U and V implies that \tilde{f} can be extended over each pizza slice to provide a map $\hat{f}: D^2 \to X$ such that $\hat{f}|_{S^1} = f$, as required. \square

Exercise 2.7. Prove that S^n is simply connected for all n > 1. Why does your argument fail for n = 1?

Exercise 2.8. Prove the following

Theorem 2.6. Suppose that the space X can be written as $X = U \cup V$ where U and V are n-connected open sets and $U \cap V$ is (n-1)-connected. Then X is n-connected.

3. The Fundamental Group

In this section we will define our most basic algebraic topological invariant – the fundamental group.

We need to establish some terminology first.

Definition 3.1. Suppose that f_0 and f_1 are maps from a space X to a space Y. We say that f_0 is homotopic to f_1 if there exists a family of maps $f_t: X \to Y$ for $t \in [0,1]$ such that the function $H: X \times [0,1] \to Y$ given by $H(x,t) = f_t(x)$ is continuous, where $X \times [0,1]$ has the product topology. We may refer to either the map H, or the family f_t as a homotopy from f_0 to f_1 .

Definition 3.2. Suppose that f_0 and f_1 are maps from a space X to a space Y which agree on a subspace $A \subset X$. We say that f_0 and f_1 are homotopic rel A if there exists a homotopy $\{f_t\}_{t\in[0,1]}$ such that $f_t(a) = f_0(a) = f_1(a)$ for all $a \in A$ and all $t \in [0,1]$.

Definition 3.3. By a path in a space X we mean a map from [0,1] to X. If $a,b\in X$ are points and $\sigma:[0,1]\to X$ is a path such that $\sigma(0)=a$ and $\sigma(1)=b$ then we may say that σ runs from a to b, or that a and b are joined by σ , or that σ starts at a and ends at b. By a loop based at x we mean a path that starts and ends at the point x.

The set of paths in a space X have what one might call a partial operation denoted \star . If σ and τ are two paths such that σ ends at the starting point of τ , then we define

$$\sigma \star \tau(t) = \begin{cases} \sigma(2t) & \text{for } t \in [0, \frac{1}{2}] \\ \tau(2t - 1) & \text{for } t \in [\frac{1}{2}, 1] \end{cases}.$$

Continuity of $\sigma \star \tau$ follows from the condition $\sigma(1) = \tau(0)$. Thus the \star operation concatenates the two paths, if possible, to produce a new path which follows first σ then τ at double speed. While this is a natural operation, its algebraic properties are as weak as possible.

Exercise 3.1. Show that the operation \star is not associative.

To obtain a reasonable algebraic structure we restrict our attention to loops based at a fixed point of X (since the \star operation is defined for any two loops) and we work with equivalence classes of paths under a suitable equivalence relation.

Definition 3.4. We say that two paths σ and τ in a space X are path homotopic if they have the same starting and ending points, and are homotopic rel $\{0,1\}$. We will write $\sigma \sim \tau$ when σ and τ are path-homotopic, and we will write $[\sigma]$ for the set of all paths which are path-homotopic to σ .

The next lemma will be used when we define the fundamental group to ensure that the multiplication operation is well-defined.

FOR NOW, REFER TO MASSEY FOR THE DEFINITION OF $\pi_1(X,x)$.

Exercise 3.2. Prove that X is simply connected if and only if X is path-connected and $\pi_1(X, x)$ is trivial for all $x \in X$.

Exercise 3.3. Suppose that X is simply-connected, and that σ and τ are paths in X with $\sigma(0) = \tau(0)$ and $\sigma(1) = \tau(1)$. Prove that σ and τ are path-homotopic.

4. The circle

FOR NOW, REFER TO CLASS NOTES FOR OUR COMPUTATION OF $\pi_1(S^1)$.

This is the key motivating example for the next definitions.

5. Coverings

Definition 5.1. A map $p: \widetilde{X} \to X$ is a *covering* if every point $x \in X$ has an open neighborhood U such that $p^{-1}(U)$ is a disjoint union of open sets U_z , for $z \in p^{-1}(x)$, such that, for each $z \in p^{-1}(x)$,

- $z \in U_z$; and
- $p|_{U_z}:U_z\to U$ is a homeomorphism.

The space \widetilde{X} is called the *covering space*, the space X is called the *base space* and the set $p^{-1}(x)$ is called the *fiber* over x.

When an open set U has the property above, it is said to be *evenly covered*, and the open sets U_z are called the *slices* over U.

We will usually want to keep track of a base point when discussing coverings. When a covering is written as a map of pairs, e.g. $p:(\tilde{X},\tilde{x})\to(X,x)$, we mean that $p:\tilde{X}\to X$ is a covering and $p(\tilde{x})=x$.

One of the most natural ways for covering to arise is from group actions.

Definition 5.2. An action of a group G on a topological space X is *nice* if it has the following property:

• Every point $x \in X$ has a neighborhood U such that $g \cdot U \cap U = \emptyset$ if $1 \neq g \in G$.

Exercise 5.1. Prove that a free, properly discontinuous action on a locally compact Hausdorff space is nice. (An action of G on X is free if no point of X is fixed by any element of G other than the identity. It is properly discontinuous if the set $\{g \in G \mid g \cdot K \cap K \neq \emptyset\}$ is finite for every compact set $K \subset X$.

Exercise 5.2. If G acts nicely on \widetilde{X} then the quotient map $q:\widetilde{X}\to X\doteq Q/G$ is a covering.

Exercise 5.3. Prove that the exponential map $t\mapsto e^{2\pi it}$ is a covering from the real line to the circle.

Exercise 5.4. Prove that the exponential map $z\mapsto e^z$ is a covering from the complex plane \mathbb{C} to $\mathbb{C}-\{0\}$.

Exercise 5.5. Construct a covering from \mathbb{R}^2 to the torus $S^1 \times S^1$.

Exercise 5.6. Construct a covering from the 2-sphere S^2 to the projective plane $\mathbb{R}P^2$.

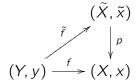
Exercise 5.7. Construct a covering from the hyperbolic plane \mathbb{H}^2 to a surface of genus 2.

6. Lifts

Definition 6.1. If $p: \widetilde{X} \to X$ is a covering and if $f: Y \to X$ is a map, we will say that f lifts if there exists a map $\widetilde{f}: Y \to \widetilde{X}$ such that $p \circ \widetilde{f} = f$. The map \widetilde{f} is called a *lift* of f. In terms of commutative diagrams, \widetilde{f} is a lift of f if the following diagram commutes:

$$\begin{array}{c|c}
\widetilde{f} & \widetilde{X} \\
\downarrow p \\
Y & \downarrow p
\end{array}$$

We will also want to keep track of basepoints when discussing lifts. If $f:(Y,y)\to (X,x)$ is a map and if there exists a lift $\tilde{f}:(Y,y)\to (\tilde{X},\tilde{x})$ then we will say that f lifts at \tilde{x} , and \tilde{f} will be called a lift of f at \tilde{x} . Thus \tilde{f} is a lift of f at \tilde{x} if the following diagram commutes:



7. Uniqueness of lifts

Lifts do not always exist. However, if a lift does exist, and if the domain is connected and locally connected, then the lift is completely determined by its value at any point of the domain.

Proposition 7.1. Let $p: \tilde{X} \to X$ be a covering, and let Y be a connected, locally-connected space. Suppose that $f: Y \to X$ is a map and that $\tilde{f_1}$ and $\tilde{f_2}$ are lifts of f. Then the set $A = \{y \in Y \mid \tilde{f_1}(y) = \tilde{f_2}(y)\}$ is either empty, or equal to Y.

Proof. Since Y is connected, it suffices to show that A and Y - A are both open sets.

Suppose $y \in Y$ and let U be an evenly covered neighborhood of f(y). Let $V \subset f^{-1}(U)$ be a connected neighborhood of y. If U_{z_1} and U_{z_2} are the slices over U that contain $z_1 = \tilde{f_1}(y)$ and $z_2 = \tilde{f_2}(y)$, then U_{z_1} and U_{z_2} are either equal (if and only if $y \in A$), or disjoint. Since V is connected, $\tilde{f_1}(V)$ and $\tilde{f_2}(V)$ are both connected. It follows that $\tilde{f_1}(V) \subset U_{z_1}$ and $\tilde{f_2}(V) \subset U_{z_2}$.

If $y \in A$, we have $U_{z_1} = U_{z_2}$. But each slice over U contains exactly one point in the pre-image of each point of U. Since $\tilde{f}_1(V)$ and $\tilde{f}_2(V)$ are both contained in the same slice this implies that $\tilde{f}_1|_V = \tilde{f}_2|_V$ and hence that $V \subset A$.

8

If $y \notin A$, U_{z_1} and U_{z_2} are disjoint, and hence \tilde{f}_1 and \tilde{f}_2 cannot agree at any point of V. Thus we have $V \subset Y - A$. This shows that both A and Y - A are open.

8. Lifting paths

A crucial property of coverings is that paths, and path homotopies, always lift.

Remark 8.1. As we shall see, it also important that the lift of a loop need not be a loop; that is, $\sigma(0) = \sigma(1)$ does not imply $\tilde{\sigma}(0) = \tilde{\sigma}(1)$.

Theorem 8.2. Let $p: \widetilde{X} \to X$ be a covering. Suppose that $\sigma: [0,1] \to X$ is a path with $\sigma(0) = x$. Let \widetilde{x} be any point in $p^{-1}(x)$. Then there exists a unique path $\widetilde{\sigma}: [0,1] \to \widetilde{X}$ such that $\widetilde{\sigma}$ is a lift of σ and $\widetilde{\sigma}(0) = \widetilde{x}$.

Proof. Since every point of X has an evenly covered neighborhood, Lemma 2.4 implies that there exists an integer N>0 such that $\sigma([\frac{i}{N},\frac{i+1}{N}])$ is contained in an evenly covered open set for each $i=0,\ldots,N-1$. It is obvious that the conclusion holds for σ if and only if it holds for any reparametrization of σ . Therefore we may assume that $\sigma=\sigma_1*\cdots*\sigma_N$ (parentheses omitted since reparametrization is irrelevant), where each path σ_i maps the unit interval into an evenly covered open set. The proof will be by induction on N.

First suppose N=1, so $\sigma_1=\sigma$. Let U be an evenly covered neighborhood of $\sigma([0,1])$. Let $q:U\to U_{\tilde{x}}$ be the inverse map of the homeomorphism $p|_{U_{\tilde{x}}}:U_{\tilde{x}}\to U$. Define $\tilde{\sigma}=q\circ\sigma$.

For the induction step we have $\sigma = (\sigma_1 * \cdots * \sigma_{N-1}) * \sigma_N$ and we know that $\tau = \sigma_1 * \cdots * \sigma_{N-1}$ has a unique lift $\tilde{\tau}$ at \tilde{x} . But we also know by induction that σ_N has a unique lift $\tilde{\sigma}_N$ at $\tilde{\tau}(1)$. We define $\tilde{\sigma} = \tilde{\tau} * \tilde{\sigma}_N$. This path is continuous since $\tilde{\tau}(1) = \tilde{\sigma}_N(0)$, and it is clearly a lift.

The uniqueness follows immediately from Proposition 7.1. \Box

Proposition 8.3. Suppose that $p: \tilde{X} \to X$ is a covering and that $\sigma: [0,1] \to X$ and $\tau: [0,1] \to X$ are paths with $\sigma(0) = \tau(0) = x_0$ and $\sigma(1) = \tau(1) = x_1$. Let \tilde{x}_0 be any point in $p^{-1}(x_0)$ and let $\tilde{\sigma}$ and $\tilde{\tau}$ be the lifts of σ and τ at \tilde{x}_0 . If σ and τ are path-homotopic then so are $\tilde{\sigma}$ and $\tilde{\tau}$. In particular, $\tilde{\sigma}(1) = \tilde{\tau}(1)$.

Proof. Assume that $H:[0,1\times[0,1]\to X$ is a path-homotopy from σ to τ , so that $H(\{0\}\times[0,1])=\{x_0\};\ H(\{1\}\times[0,1])=\{x_1\};\ H(t,0)=\sigma(t);\ \text{and}\ H(t,1)=\tau(t).$ It suffices to show that H has a lift \widetilde{H} such that $\widetilde{H}(0,0)=\widetilde{x}_0$. For then by uniqueness of path-lifting (including the fact that a lift of a constant path is constant) we must have $\widetilde{H}(\{0\}\times[0,1])=\{\widetilde{x}_0\};\ \widetilde{H}(\{1\}\times[0,1])=\widetilde{\sigma}(1)=\widetilde{\tau}(1);\ \widetilde{H}(t,0)=\widetilde{\sigma}(t);\ \text{and}\ \widetilde{H}(t,1)=\widetilde{\tau}(t).$

By Exercise 2.6, there is an integer N > 0 such that each of the squares $S_{i,j} = \left[\frac{i}{N}, \frac{i+1}{N}\right] \times \left[\frac{j}{N}, \frac{j+1}{N}\right]$ is mapped by H into an evenly covered open set in X, which we regard as a neighborhood of the point $Z_{i,j} = H\left(\frac{i}{N}, \frac{j}{N}\right)$.

Given any point $\tilde{z}_{i,j} \in p^{-1}(z_{i,j})$, it is easy to construct a lift of $H|_{S_{i,j}}$ which maps $(\frac{i}{N}, \frac{j}{N})$ to $\tilde{z}_{i,j}$: if U is an evenly covered open set containing $H(S_{i,j})$ and \widetilde{U} is the slice over U which contains $\tilde{z}_{i,j}$ then we take the lift to be $q \circ H|_{S_{i,j}}$, where q is the inverse map of the homeomorphism $p|_{\widetilde{U}}: \widetilde{U} \to U$.

Define lifts $\widetilde{H}_{i,j}$ of $H|_{S_{i,j}}$ inductively. First, we define $\widetilde{H}_{0,0}$ to be the lift of $H|_{S_{0,0}}$, constructed as above, which sends (0,0) to $\widetilde{\sigma}(0)$. Next we define $\widetilde{H}_{0,1}$ to be the lift of $H|_{S_{1,0}}$ which sends $(\frac{1}{N},0)$ to $\widetilde{\sigma}(\frac{1}{N})$. We observe that the restrictions of $\widetilde{H}_{0,0}$ and $\widetilde{H}_{1,0}$ to the segment $S_{0,0}\cap S_{1,0}$ agree, since they are lifts of the same path and they agree at one point. Thus the pasting lemma gives a lift of the restriction of H to $S_{0,0}\cup S_{1,0}$. Continuing by induction we obtain a lift of the restriction of H to the first row $S_{0,0}\cup\cdots\cup S_{N-1,0}$. To continue to the second row, we let $\widetilde{H}_{0,1}$ be the lift of $H|_{S_{0,1}}$ which agrees with $\widetilde{H}_{0,0}$ at the point $(0,\frac{1}{N})$. Again, uniqueness of path lifting guarantees that $\widetilde{H}_{0,0}$ and $\widetilde{H}_{1,0}$ agree on the entire segment $S_{0,0}\cap S_{0,1}$, giving a continuous lift of the restriction of H to the union of the first row and the first square of the second row. We continue across the second row, observing that uniqueness of path-lifting ensures that each new lift agrees with all previous lifts on both segments where the new square meets the union of the previous squares. The proposition follows by induction.

9. The right action of $\pi_1(X,x)$ on the fiber over x

The results of the preceding section have the following important consequence. Suppose that $p: \widetilde{X} \to X$ is a covering and that $\sigma: [0,1] \to X$ is a loop based at a point $x \in X$. Then

- for each point $z \in p^{-1}(x)$, there is lift $\tilde{\sigma}$ with $\tilde{\sigma}(0) = z$;
- $\tilde{\sigma}$ is a path, but may or may not be a loop;
- The endpoint $\tilde{\sigma}(1)$ depends only on the path-homotopy class of σ .

Proposition 9.1. Suppose that $P: \widetilde{X} \to X$ is a covering and that x is a point of X. There is a unique right action of $\pi_1(X,x)$ on the set $p^{-1}(x)$ such that

• if $g \in \pi_1(X, x)$ is represented by the loop σ and if z is a point in $p^{-1}(x)$ then the lift $\tilde{\sigma}$ of σ at z is a path from z to $z \cdot g$.

Proof. For $g \in \pi_1(X, x)$ and $z \in p^{-1}(x)$ we would like to define $z \cdot g$ by the following procedure: choose a loop σ representing g; let $\tilde{\sigma}$ be the lift of σ with $\tilde{\sigma}(0) = z$; and set $z \cdot g = \tilde{\sigma}(1)$. Of course we must check that this is well-defined, i.e that it does not depend on the choice of a loop σ representing the element g of $\pi_1(X, x)$. But that is

an immediate consequence of the last sentence of Proposition 8.3: if τ is another loop representing g and if $\tilde{\tau}$ is the lift of τ at z, then $\tilde{\sigma}(1) = \tilde{\tau}(1)$.

Next we must verify that this gives a group action, i.e. that $(z \cdot g) \cdot h = z \cdot (gh)$. To describe $(z \cdot g) \cdot h$ we choose loops σ representing h and τ representing g. Let $\tilde{\tau}$ be the lift of τ at z. Then $\tilde{\tau}(1) = z \cdot g$. If we let $\tilde{\sigma}$ be the lift of σ at $\tilde{\tau}(1)$, then $(z \cdot h) \cdot g = \tilde{\sigma}(1)$. By construction, $\tilde{\sigma}(0) = \tilde{\tau}(1)$. Thus the path product $\tilde{\tau} * \tilde{\sigma}$ is defined, and gives a path from z to $(z \cdot g) \cdot h$. The path $\tilde{\tau} * \tilde{\sigma}$ is a lift of the path $\tau * \sigma$, which represents the element gh in $\pi_1(X,x)$. Thus we have shown $(z \cdot g) \cdot h = z \cdot (gh)$.

10. Nice actions on simply connected spaces

Here we will show that if a group G acts nicely on a simply connected space \widetilde{X} then the fundamental group of \widetilde{X}/G is isomorphic to G. This gives a powerful method for determining the fundamental group of a space.

Theorem 10.1. Suppose that the group G acts nicely on a simply connected space \widetilde{X} . Let $X = \widetilde{X}/G$. Then $\pi_1(X, x)$ is isomorphic to G for any point $x \in X$.

Proof. Since G acts nicely, the quotient map from \widetilde{X} to X is a covering. Choose a point $\widetilde{x} \in p^{-1}(x)$. Since nice actions are free, and $p^{-1}(x)$ is by definition an orbit, the group G acts freely and transitively on $p^{-1}(x)$. This gives a bijection between elements of G and points of $p^{-1}(x)$: $g \leftrightarrow \widetilde{x} \cdot g$.

Next we consider the right action of $\pi_1(X,x)$ on $p^{-1}(x)$. We claim that this action is also free and transitive. To see that it is transitive, let z be any point of $p^{-1}(x)$. Since X is path-connected there is a path $\tilde{\sigma}$ from \tilde{x} to z. Its projection $\sigma = p \circ \tilde{\sigma}$ is a loop in X based at x. If γ is the element of $\pi_1(X,x)$ represented by σ then we have $\tilde{x} \cdot \gamma = z$. To see that the action is free, suppose that $z \cdot \gamma = z$. Let σ be a loop in X which represents γ and let $\tilde{\sigma}$ be the lift of σ at z. Since $z \cdot \gamma = z$, we have $\tilde{\sigma}(0) = \tilde{\sigma}(1) = z$. But this implies that γ is in the image of $p_*: \pi_1(\tilde{X},z) \to \pi_1(X,x)$, which contains only the identity element since $\pi_1(\tilde{X},z)$ is trivial. This shows that the right action is trivial, and gives a bijection between elements of $\pi_1(X,x)$ and points of $p^{-1}(x)$: $\gamma \leftrightarrow \tilde{x} \cdot \gamma$.

Now we consider how the left action of G is related to the right action of $\pi_1(X,x)$. For $g \in G$, $\gamma \in \pi_1(X,x)$ and $z \in p^{-1}(x)$, we claim that $g \cdot (z \cdot \gamma) = (g \cdot z) \cdot \gamma$. To see this, let σ be a loop in X representing γ . If $\tilde{\sigma}$ is the lift of σ at z then $\tilde{\sigma}(1) = z \cdot \gamma$). Consider the path $g \circ \tilde{\sigma}$ (where we regard g as a function from \tilde{X} to itself given by $y \mapsto g \cdot y$). We have $g \circ \tilde{\sigma}(0) = g \cdot z$, and $g \circ \tilde{\sigma}$ is a lift of σ . Thus $g \circ \tilde{\sigma}$ is the lift of σ at $g \cdot z$ and we have

$$g \cdot (z \cdot \gamma) = g \cdot \widetilde{\sigma}(1) = g \circ \widetilde{\sigma}(1) = (g \cdot z) \cdot \gamma$$

as claimed.

If we compose our two bijections we obtain a bijection between the groups G and $\pi_1(X, x)$ given by:

$$g \leftrightarrow \gamma \Leftrightarrow g \cdot \tilde{x} = \tilde{x} \cdot \gamma$$
.

We will check that this is a group homomorphism. Suppose that $g \leftrightarrow \gamma$ and $h \leftrightarrow \eta$. Then

$$(gh) \cdot \tilde{x} = g \cdot (h \cdot \tilde{x}) = g \cdot (\tilde{x} \cdot \eta) = (g \cdot \tilde{x}) \cdot \eta = (\tilde{x} \cdot \gamma) \cdot \eta = \tilde{x} \cdot (\gamma \eta).$$

This shows that our bijection is a group isomorphism, and completes the proof of the Theorem. \Box

Exercise 10.1. Show that $\pi_1(S^1) \cong C_{\infty}$, the infinite cyclic group.

Exercise 10.2. Show that $\pi_1(\mathbb{C} - \{0\}) \cong C_{\infty}$.

Exercise 10.3. Show that $\pi_1(\mathbb{R}P^2) \cong C_2$, the cyclic group of order 2.

Exercise 10.4. Show that the fundamental group of the torus \mathbb{T}^2 is a free abelian group of rank 2.

Exercise 10.5. Construct a group of isometries of the hyperbolic plane which is isomorphic to the fundamental group of a sphere with two handles (a surface of genus 2).

11. The general lifting criterion

We are now ready to analyze when a map from a (fairly) general space lifts to a covering. First, an easy but important observation.

Proposition 11.1. If $p:(\widetilde{X},\widetilde{x})\to (X,x)$ is a covering then $p_*:\pi_1(\widetilde{X},\widetilde{x})\to (X,x)$ is an injection.

Proof. . Suppose that $\tilde{\sigma}$ is a loop based at \tilde{x} in \tilde{X} which represents an element g of the kernel of p_* . We will show g=1. Let $\sigma=p\circ\tilde{\sigma}$. Since σ represents $p_*(g)$, we know that there exists a path-homotopy from σ to the constant loop. Since path-homotopies lift, this implies that $\tilde{\sigma}$ is homotopic to the constant loop, and hence g=1.

Remark 11.2. If $p:(\tilde{X},\tilde{x})\to (X,x)$ is a covering then the group $p_*:\pi_1(\tilde{X},\tilde{x})\to (X,x)$ can be characterized as the subgroup of $\pi_1(X,x)$ consisting of all elements which can be represented by a loop which lifts to a loop at \tilde{x} . This is just a tautology, but it is a useful way of thinking about the image group.

Now we can state the general lifting criterion. In view of the remark above, the lifting criterion says that a map $f:(Y,y)\to (X,x)$ lifts at $\tilde x$ if and only if f maps each loop in Y based at y to a loop in X based at x which, in turn, lifts to a loop in $\tilde X$ based at $\tilde x$.

Theorem 11.3. Suppose that $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$ is a covering, Y is a path-connected, locally path-connected space and $f: (Y, y) \to (X, x)$ is a map. Then f lift to $\widetilde{f}: (Y, y) \to (\widetilde{X}, \widetilde{x})$ if and only if the subgroup $p_*(\pi_1(Y, y))$ is contained in the subgroup $p_*(\pi_1(\widetilde{X}, \widetilde{x}))$.

Proof. If the lift \tilde{f} exists, then by definition we have $p \circ \tilde{f} = f$, so it follows from functoriality of π_1 that the image of f_* is contained in the image of p_* .

Now assume that $p_*(\pi_1(Y,y)) < p_*(\pi_1(\widetilde{X},\widetilde{x}))$. We must construct the map \widetilde{f} . In view of the fact that paths always lift, the following definition of \widetilde{f} is forced upon us. Given $z \in Y$, choose a path τ from y to z. (Such a path exists since Y is path-connected.) Then $\sigma = f \circ \tau$ is a path in X from x to f(z). Let $\widetilde{\sigma}$ be the lift of σ at \widetilde{x} . Define $\widetilde{f}(z) = \widetilde{\sigma}(1)$.

Of course, we must check that this is well-defined, i.e. that if we had chosen a different path from y to z our construction would have produced the same value for f(z). Suppose that τ_1 and τ_2 are paths from y to z. Observe that $\tau_1 * \overline{\tau_2}$ is a loop based at y. If we set $\sigma_1 = p \circ \tau_1$ and $\sigma_2 = p \circ \tau_2$ then $\sigma_1 * \overline{\sigma_2}$ is a loop based at x which represents an element of $p_*(\pi_1(Y,y))$. Since $p_*(\pi_1(Y,y)) < p_*(\pi_1(\widetilde{X},\widetilde{X}))$, the loop $\sigma_1 * \overline{\sigma_2}$ represents an element of $p_*(\pi_1(\widetilde{X},\widetilde{X}))$, which is to say that it lifts to a loop in \widetilde{X} based at \widetilde{X} . Let $\widetilde{\sigma_1}$ and $\widetilde{\sigma_2}$ denote the lifts of σ_1 and σ_2 at \widetilde{X} . The statement that $\sigma_1 * \overline{\sigma_2}$ lifts to a loop at \widetilde{X} is equivalent to the statement that the lift of $\overline{\sigma_2}$ at $\widetilde{\sigma_1}(1)$ is a path from $\widetilde{\sigma_1}(1)$ to $\widetilde{Z} = \widetilde{\sigma_1}(0)$. By uniqueness of path lifting, the lift of $\overline{\sigma_2}$ must therfore be equal to $\overline{\widetilde{\sigma_2}}$. Thus $\widetilde{\sigma_2}(1) = \widetilde{\sigma_1}(1)$, which shows that our function \widetilde{f} is well-defined.

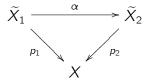
It remains to check that \tilde{f} is continuous. This is where we will use that Y is locally path-connected. For $z \in Y$, let W be a neighborhood of $\tilde{f}(z)$. We may choose an evenly covered neighborhood U of f(z) such that W contains the slice $U_{f(z)}$ over U which contains f(z). We will show that $\tilde{f}(V) \subset U_{f(z)} \subset W$. Fix a path τ from y to z. For $w \in V$, let ν_w be a path from z to w in V. Since the definition of \tilde{f} does not depend on the choice of path, we may use the path $\tau * \nu_w$ to determine $\tilde{f}(w)$. If we set $\sigma_w = f \circ \nu_w$, and let $\tilde{\sigma}_w$ be the lift of σ_w at $\tilde{f}(z)$, then according to our definition we have $\tilde{f}(w) = \tilde{\sigma}_w(1)$. Since the image of σ_w is contained in the evenly covered open neighborhood U of f(z), the lift $\tilde{\sigma}_w$ has image contained in $U_{f(z)}$ and $\tilde{f}(z) \in U_{f(z)} \subset W$. This shows that \tilde{f} is continuous at z, which was an arbitrary point of Y.

12. The correspondence theorem

In order to classify coverings, we need to address the question of when two covers are the "same".

Definition 12.1. Suppose that $p_1: \widetilde{X}_1 \to X$ and $p_2: \widetilde{X}_2 \to X$ are coverings. By a morphism from \widetilde{X}_1 to \widetilde{X}_2 we mean a map $\alpha: X_1 \to X_2$ such that $p_2 \circ \alpha = p_1$. In other

words, it is a map which makes the following diagram commute:



The coverings are *isomorphic* if there exist morphisms $\alpha: \tilde{X}_1 \to \tilde{X}_2$ and $\beta: \tilde{X}_2 \to \tilde{X}_1$ such that $\alpha \circ \beta$ and $\beta \circ \alpha$ are identity maps.

Remark 12.2. It is essential to make the easy obervation that morphisms of covers are, in particular, lifts. One consequence of this is that a morphism is completely determined by the image of a single point. Accordingly, one should keep track of basepoints when analyzing morphisms.

Proposition 12.3. Suppose $p_1: (\tilde{X}_1, \tilde{x}_1) \to (X, x)$ and $p_2: (\tilde{X}_2, \tilde{x}_2) \to (X, x)$ are coverings, where X, \tilde{X}_1 and \tilde{X}_2 are connected and locally path-connected. There exists an isomorphism $\alpha: (\tilde{X}_1, \tilde{x}_1) \to (\tilde{X}_2, \tilde{x}_2)$ if and only if $p_{1*}(\pi_1(\tilde{X}_1, \tilde{x}_1)) = p_{2*}(\pi_1(\tilde{X}_2, \tilde{x}_2))$.

Proof. This follows immediately from the lifting criterion given in Theorem 11.3. \Box

We can now prove a converse to Theorem 10.1 under the extra hypothesis that X is connected and locally path-connected.

Theorem 12.4. Suppose that X is a connected, locally path-connected space and that $p: \widehat{X} \to X$ is a covering with \widehat{X} simply connected. Then $\pi_1(X)$ acts nicely on \widehat{X} with quotient space X.

Proof. Let us fix basepoints $x \in X$ and $\hat{x} \in p^{-1}(x) \subset \hat{X}$. Since $\pi_1(\hat{X}, \hat{x})$ is trivial, Proposition 12.3 implies that the group A of automorphisms of the covering p acts transitively on $p^{-1}(x)$. Proposition 7.1 implies that this action is free, since an isomorphism which fixes a point must be the identity map. As shown in the proof of Theorem 10.1, the right action of $\pi_1(X,x)$ on $p^{-1}(x)$ is also free and transitive. Moreover, the same argument that was used in the proof of Theorem 10.1 gives us an isomorphism between A and $\pi_1(X,x)$, where $\alpha \in A$ corresponds with $\gamma \in \pi_1(X,x)$ if and only if $\alpha \cdot \hat{x} = \hat{x} \cdot \gamma$.

Since the choice of x was arbitrary, we have that the orbits of A are exactly the fibers of p. Thus the only additional thing which must be proven here is that each point z of \widehat{X} has a neighborhood U_z such that $\alpha \cdot U_z \cap U_z = \emptyset$ for every $\alpha \in A - \{1\}$. To see this we use local path-connectedness for the second time. Since X is locally path-connected there exists an evenly covered neighborhood U of p(z) which is path-connected. The slices above U are the path-components of $p^{-1}(U)$, and these must be permuted by each automorphism α . In particular, if we take U_z to be the slice containing z then z then z the slice containing z then z then z to be the slice containing z then z then z the slice containing z then z that z then z

We have that each isomorphism class of connected covering spaces of X corresponds to a unique subgroup of the fundamental group of X. It is natural to ask whether every subgroup is associated to a covering. For this to be true, there would have to exist a simply connected covering space, to go with the trivial subgroup. It turns out that the existence of a simply connected covering space is sufficient to give a one-to-one correspondence between subgroups and covering.

Theorem 12.5 (Correspondence Theorem). Let X be a connected, locally path-connected space and assume that there exists a covering $p: \hat{X} \to X$ where \hat{X} is simply connected. Choose a basepoint $x \in X$. Then

- for each subgroup $H < \pi_1(X, x)$ there exists a covering $p_H : (\widetilde{X}_H, \widetilde{x}_H) \to (X, x)$ such that \widetilde{X}_H is connected and $p_H * (\pi_1(\widetilde{X}_H, \widetilde{x}_H)) = H$;
- the coverings p_H and p_K are isomorphic if and only if the subgroups H and K are equal;
- any covering $p: (\widetilde{X}, \widetilde{x}) \to (X, x)$, with \widetilde{X} connected, is isomorphic to p_H for some subgroup $H < \pi_1(X, x)$.

Proof. All of the conclusions follow from Proposition 12.3 except for the existence of the cover \widetilde{X}_H . For this we need to use the simply connected covering space \widehat{X} . Since $\pi_1(X,x)$ acts nicely on \widehat{X} , the subgroup H also acts nicely. We define $\widetilde{X}_H = \widehat{X}/H$ and we define \widetilde{X}_H to be the orbit of \widehat{X} under the action of H.

We know from Theorem 10.1 that $\pi_1(tX_h)$ is isomorphic to H, but to show that $p_H * (\pi_1(\widetilde{X}_H, \widetilde{x}_H)) = H$ we need to identify exactly how H is acting.

Recall from the proof of Theorem 10.1 that our identification of $\pi_1(X,x)$ with the automorphism group of the covering $p:(\widehat{X},\widehat{x})\to (X,x)$ pairs an element g of $\pi_1(X,x)$ with an automorphism α when $\alpha(\widehat{x})=\widehat{x}\cdot g$. Thus a loop σ in X based at x will lift to a loop in \widetilde{X}_H based at \widetilde{X}_H precisely when it lifts to a path in \widehat{X} joining \widehat{x} to $\widehat{x}\cdot h$ for some $h\in H$. Since the image of p_H* consists of those elements of $\pi_1(X,x)$ which are represented by loops that lift to loops at \widetilde{X}_H in \widetilde{X}_H , this shows that the image is equal to H.

13. Automorphisms of coverings

We can now determine the structure of the autormorphism group of an arbitrary connected, locally path-connected covering space.

Theorem 13.1. Suppose that X is a connected, locally path-connected space and that $p_H: (\tilde{X}_H, \tilde{x}_H) \to (X, x)$ is the covering corresponding to the subgroup $H < \pi_1(X, x)$. Then the automorphism group of p_H is isomorphic to N(H)/H, the quotient of the normalizer of H by H.

Proof. Let A denote the automorphism group of p_H and choose $\alpha \in A$. According to the easy direction of the lifting criterion, we have $p_{H*}(\pi_1(\widetilde{X},\alpha(\widetilde{x}))) = p_{H*}(\pi_1(\widetilde{X},\widetilde{x})) = H$. On the other hand, if $\widetilde{\sigma}$ is a path from \widetilde{x} to $\alpha(\widetilde{x})$ then every element of $\pi_1(\widetilde{X},\alpha(\widetilde{x}))$ is represented by a loop of the form $\widetilde{\sigma}*\widetilde{\tau}*\overline{\widetilde{\sigma}}$ where $\widetilde{\tau}$ is a loop based at $\alpha(\widetilde{x})$. Setting $\sigma=p_H\circ\widetilde{\sigma}$, and letting g be the element of $\pi_1(X,x)$ represented by σ , this gives $gHg^{-1}=H$. Thus any path from \widetilde{x} to $\alpha(\widetilde{x})$ projects to a loop in X representing an element of the normalizer of H. Conversely, if g is an element of the normalizer of H, represented by a loop σ , and if $\widetilde{\sigma}$ is the lift of σ at \widetilde{x} , then $p_{H*}(\pi_1(\widetilde{X}_H,\widetilde{\sigma}(1))) = gHg^{-1} = H$. Thus by the harder direction of the lifting criterion, there exists an automorphism α with $\alpha(\widetilde{x})=\widetilde{\sigma}(1)$.

We may therefore define a surjective function $\phi: N(H) \to A$ as follows. Given $g \in N(A)$, let σ be a loop representing g and let $\tilde{\sigma}$ be the lift of σ at \tilde{x} . Define $\phi(g)$ to be the automorphism which maps \tilde{x} to $\tilde{\sigma}(1)$. We may express the defining property of ϕ in terms of the path-lifting right action: $\phi(g) = \alpha \Leftrightarrow \alpha(\tilde{x}) = \tilde{x} \cdot g$. It follows formally, much as in the proof of Theorem 10.1 that ϕ is a homomorphism. If $\phi(g) = \alpha$ and $\phi(h) = \beta$ then we have

$$\alpha \circ \beta(\tilde{x}) = \alpha(\tilde{x} \cdot h) = \alpha(\tilde{x}) \cdot h = (\tilde{x} \cdot g) \cdot h = \tilde{x} \cdot (gh),$$

which implies that $\phi(gh)$ maps \tilde{x} to the same point as $\phi(g) \circ \phi(h)$ and, since an automorphism is determined by the image of one point, this implies $\phi(gh) = \phi(h) \circ \phi(h)$.

It remains to show that the kernel of ϕ is H. According to our definition of ϕ , an element of $\pi_1(X, x)$ will be in the kernel of ϕ if it is represented by a loop which lifts to a loop at \tilde{x} . According to Remark 11.2 this property characterizes the subgroup H.

In fact, this theorem could be proved formally, with no reference to path-lifting by identifying the automorphism group with a group A of permutations of $p_H^{-1}(x)$ which acts freely and satisfies $\alpha(\tilde{x} \cdot g) = \alpha(\tilde{x}) \cdot g$ for all $g \in \pi_1(X, x)$. Note that H is the stabilizer of \tilde{x} under the right action.

Given such a permutation α , transitivity of the right action ensures that there exists $g \in \pi_1(X, x)$ such that $\alpha(\tilde{x}) = \tilde{x} \cdot g$. We observe that $g \in N(H)$: if $h \in H$ then

$$\alpha(\tilde{x} \cdot g^{-1}hq)) = \alpha(\tilde{x}) \cdot g^{-1}hq = (\tilde{x} \cdot q) \cdot g^{-1}hq = \tilde{x} \cdot hq = \tilde{x} \cdot q = \alpha(\tilde{x}).$$

Thus $\tilde{x} = \tilde{x} \cdot g^{-1}hg$, which shows $g^{-1}Hg \subset H$. On the other hand,

$$\tilde{x} \cdot (ghg^{-1}) = (\tilde{x} \cdot g) \cdot hg^{-1} = (\alpha(\tilde{x}) \cdot h) \cdot g^{-1} = \alpha(\tilde{x} \cdot h) \cdot g^{-1} = \alpha(\tilde{x}) \cdot g^{-1} = (\tilde{x} \cdot g) \cdot g^{-1} = \tilde{x},$$
 which shows $gHg^{-1} \subset H$. Thus $gHg^{-1} = g^{-1}Hg = H$.

Conversely, if $g \in N(H)$, we claim there exists a unique permutation $\alpha \in A$ with $\alpha(\tilde{x}) = \tilde{x} \cdot g$. Every point of $p_H^{-1}(x)$ can be written as $\tilde{x} \cdot k$ for some $k \in \pi_1(X, x)$, so we can attempt to define α by the rule $\alpha(\tilde{x} \cdot k) = \tilde{x} \cdot (gk)$. This uniquely determines α , provided it is well-defined. To show it is well defined we observe that if $k_1 k_2^{-1} \in H$ then

$$\tilde{x} \cdot g k_1 k_2^{-1} = \tilde{x} \cdot g k_1 k_2^{-1} g^{-1} g = \tilde{x} \cdot g$$

and hence $\tilde{x} \cdot (gk_1) = \tilde{x} \cdot (gk_2)$.

Now we define $\phi: N(H) \to A$ by letting $\phi(g)$ be the unique element α of A such that $\alpha(\tilde{x}) = \tilde{x} \cdot g$ and proceed as before.

Definition 13.2. Let X and \widetilde{X} be connected, locally path-connected spaces and let $p:\widetilde{X}\to X$ be a covering. We say that p is *normal* if the subgroup $p_*(\pi_1(\widetilde{X},\widetilde{X}))$ is normal in $\pi_1(X,x)$ for some (hence every) choice of $x\in X$ and $\widetilde{X}\in p^{-1}(X)$.

Observe that if H is a normal subgroup of $\pi_1(X, x)$ then the automorphism group of the covering $p_H: (\widetilde{X}_H, \widetilde{X}_H) \to (X, x)$ is isomorphic to the quotient $\pi_1(X, x)/H$.

Proposition 13.3. A connected covering of a connected, locally path-connected space is normal if and only if its automorphism group acts transitively on each fiber.

Proof. Suppose X and \widetilde{X} are connected, locally path-connected spaces and $p:(\widetilde{X},\widetilde{x})\to (X,x)$ is a covering. Set $H=p_*(\pi_1(\widetilde{X},\widetilde{x}))$. Recall, from the proof of Theorem 13.1 that there is an automorphism taking \widetilde{x} to $z\in p^{-1}(x)$ if and only if any path from \widetilde{x} to z projects to a loop representing an element of N(H).

Assume that H is normal. Given any point $z \in p^{-1}(x)$, let $\tilde{\sigma}$ be a path from \tilde{x} to z. The projection $\sigma = p \circ \tilde{\sigma}$ obviously represents an element of N(H), since $N(H) = \pi_1(X, x)$. Thus there exists an automorphism mapping \tilde{x} to z. This implies that the automorphism group acts transitively

Conversely, suppose that the automorphism group acts transitively on $p^{-1}(x)$. We will show that $N(H) = \pi_1(X, x)$, hence H is normal. Choose any element $g \in \pi_1(X, x)$. Let σ be a loop representing g and let $\tilde{\sigma}$ be its lift at \tilde{x} . Consider the point $z = \tilde{\sigma}(1)$. By transitivity, there exists an automorphism taking \tilde{x} to z. Thus $g \in N(H)$, as required. \square

14. Gluing spaces together: Van Kampen's theorem

Stay tuned!