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1. Hom and Tensor

It was the best of times, it was the worst of times, it was the age of covariance, it was the

age of contravariance, it was the epoch of homology, it was the epoch of cohomology, it

was the season of Ext, it was the season of Tor, it was the spring of short exact sequences,

it was the winter of long exact sequences, we had right exactness, we had left exactness,

our arrows were all going in one direction, our arrows were all reversed – in short, the

period was so far like the present period, that some of its noisiest authorities insisted on

its being received, for good or for evil, as the age of homological algebra.

This is the story of two functors, Hom and Tensor. Hom produces cohomology groups

while Tensor produces fancy homology groups in which homology classes are represented

by chains whose coefficients may not be integers. Hom is easy to describe, but is a bit

kinky due to its trait of reversing arrows. It is a contravariant functor. Tensor, on the

other hand, is harder to define but it keeps arrows pointing in the same direction; it is

covariant.

First we will introduce Hom. Let R be a commutative ring with 1 and A an R-module.

The module A determines a functor from the category of R-modules to itself which acts

as follows:

• M  HomR(M,A);

• f : M → N  f ∗ : HomR(N,A)→ HomR(M,A), where f ∗(g) = g ◦ f .

We will denote this functor by HomR( , A). The notation f ∗ for the image of a morphism

f under HomR( , A) could be problematic since it contains no reference to the module

A. Hopefully it will be clear from the context which module A is being used to define

the functor whenever we use this notation. We remark that the commutativity of R is

required in order for HomR(M,A) to have the structure of an R-module. If R were not

commutative, HomR(M,A) would be nothing more than a mere abelian group.

For those who may not have seen the definition of the tensor product lately, or ever, we

give a very brief review before introducing Tensor. We will only consider modules over

commutative rings, and only mention the most basic properties. An algebra class will

have much more to say about this topic.
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Definition 1.1. Let A and B be R-modules. Let F be the free R-module with basis

indexed by the set A × B. Denote the basis element indexed by (a, b) as [a, b]. The

module A ⊗R B is defined to be the quotient of F by the submodule generated by all

elements of F of the following forms:

• [r1a1 + r2a2,b]− r1[a1,b]− r2[a2,b] for all r1, r2 ∈ R, a1, a2 ∈ A and b ∈ B.

• [a, r1b1 + r2b2]− r1[a,b1]− r2[a,b2] for all r1, r2 ∈ R, a ∈ A and b1,b2 ∈ B.

The coset of the relation submodule which contains [a, b] will be denoted a ⊗ b.

It is clear from the definition that the following relations hold in A⊗R B:

• (r1a1 + r2a2)⊗ b = r1(a1 ⊗ b) + r2(a2 ⊗ b)

• a⊗ (r1b1 + r2b2) = r1(a⊗ b1) + r2(a⊗ b2)

While a module defined this way is a fairly incomprehensible object, there is one thing

(perhaps the only thing) that is readily apparent from the definition, namely that A⊗R B
has a universal property. If A, B and C are R-modules, we will say that a homomorphism

φ : A× B → C is bilinear if

• φ(r1a1 + r2a2,b) = r1φ(a1,b) + r1φ(a2,b); and

• φ(a, r1b1 + r2b2) = r1φ(a,b1) + r2φ(a,b2)

The prototypical example of a bilinear homomorphism is a product of two homomorphisms

to R. If f : A → R and g : B → R are homomorphisms, then (a, b) 7→ f (a)g(b) is a

bilinear homomorphism from A × B → R. More generally, whenever the target C has

the structure of an R-algebra one can construct bilinear homomorphisms in this way. But

they arise in other ways too. In particular, there is a well-defined bilinear homomorphism

from A× B to A⊗R B given by (a, b) 7→ a ⊗ b.

Proposition 1.2. The R-module A⊗R B has the following universal property. Given any

bilinear homomorphism ϕ : A × B → C there exists a unique R-module homomorphism

Φ : A⊗R B → C making the following diagram commute:

A× B A⊗R B

C

(a,b) 7→a⊗b

ϕ Φ

Proof. Let F be the free module with basis indexed by A × B, as in the definition of

A ⊗R B. Define a homomorphism from F to C by sending the basis element [a, b]

to ϕ(a, b). Since this homomorphism sends relators to 0, it induces a homomorphism Φ

which makes the diagram commute. Any homomorphism Φ making the diagram commute

would be induced by this same homomorphism from F to C. Thus Φ is unique. �
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Example 1.3. Let’s take R = Z, so we are considering abelian groups, and compute a

few examples. Here, and whenever we work with Z-modules, we will drop the subscript

and use ⊗ to mean ⊗Z.

If G is an abelian group and F is a free abelian group with basis B then Hom(F,G) is

isomorphic to the direct product
∏
B G of copies of G indexed by B. This is just the state-

ment that homomorphisms from F to G are in one to one correspondence with functions

from B to G, together with the observation that the correspondence is a homomorphism.

In the same setting, we find that F ⊗ G is isomorphic to the direct sum
⊕
B G of copies

of G indexed by the basis B. To see this, recall that the direct sum
⊕
B G is characterized

in terms of the inclusion homomorphism ib for b ∈ B. We must check that F ⊗ G has

a family of inclusion homomorphisms with the same universal property. For each b ∈ B
we take ib(g) = b ⊗ g ∈ F ⊗ B. Given any family fb of homomorphisms from G to an

abelian group A we must construct a homomorphism from F ⊗B to A which sends b⊗ g
to fb(g). For this it suffices to check the bilinearity of the homomorphism from F ×G to

A given, for an arbitrary finite subset B of B, by (
∑

b∈B nbb, g) 7→
∑

b∈B nbfb(g).

Finally, given two integers m and n we figure out the structure of the abelian group

Zm ⊗ Zn; we will show that it is isomorphic to Zr where r is the gcd of m and n. First

observe that Zm ⊗ Zn is a cyclic group generated by the element 1⊗ 1. In fact, we have

a⊗ b = ab(1⊗ 1), so every element of Zm⊗Zn is a sum of multiples of 1⊗ 1, and hence

is itself a multiple of 1 ⊗ 1. Next observe that the generator 1 ⊗ 1 has order dividing r .

To see this write r = pm + qn and compute that

r(1⊗ 1) = pm(1⊗ 1) + qn(1⊗ 1) = pm ⊗ 1 + 1⊗ qn = 0

since pm = 0 in Zm and qn = 0 in Zn. Thus the order of the cyclic group Zm⊗Zn divides

r . On the other hand, the universal property implies that Zm ⊗ Zn maps onto Zr , since

there is a surjective bilinear map from Zm × Zn to Zr given by (a, b) 7→ ab mod r .

Now we are ready to introduce Tensor. Again, we assume that R is a commutative ring

with 1 and that A is an R-module. Then A determines a functor, denoted ⊗R A, from

the category of R-modules to itself which is given by:

• M  M ⊗R A; and

• f : M → N  f ⊗ id : M ⊗R A→ N ⊗R A.

Here f ⊗ id is determined by the bilinear homomorphism (m, a) 7→ f (m)⊗ a.

It is immediate from functoriality that ⊗RA carries chain complexes to chain complexes

and that HomR( , A) carries chain complexes to cochain complexes (i.e. differential

graded R-modules with differential of graded degree 1, rather than -1).

It therefore makes sense to take a chain complex C, apply one or the other of these

functors, and consider the (co)homology groups of the resulting (co)chain complex. The
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cohomology groups obtained from the cochain complex Hom(C,G) are called cohomology

groups with G coefficients and are denoted Hn(C;G). The homology groups of C ⊗ G
are homology groups with G coefficients and are denoted Hn(C;G).

A key feature of the functors HomR( , A) and ⊗RA is that they are additive, meaning

that they respect the R-module structure on HomR(M,N). Thus if f : M → N and

g : M → N are R-module homomorphisms and if F denotes either of the functors, then

F(f + g) = F(f ) + F(g). A consequence of this is that these functors carry (co)chain

homotopies to (co)chain homotopies. (Recall that the definition of chain homotopy

requires addition of homomorphisms.)

2. Ext and Tor

An interesting aspect of Hom and Tensor is that they are not exact functors – they do

not necessarily carry short exact sequences to short exact sequences. But they almost

do.

Proposition 2.1. Let R be a commutative ring with 1 and let

0 K E Q 0
i p

be a short exact sequence of R-modules. Then for any R-module A the sequence

HomR(K,A) HomR(E,A) HomR(Q,A) 0
i∗ p∗

is exact. (But the map i∗ may not be surjective.)

Proof. It follows from the surjectivity of p that f ◦p = 0 ⇒ f = 0, so p∗ is injective. The

equality ker(i∗) = im(p∗) is equivalent to the statement that a homomorphism E → A

restricts to the zero homomorphism on K if and only if it induces a homomorphism

Q→ A. �

The analogous statement for ⊗R takes a bit more work.

Proposition 2.2. Let R be a commutative ring with 1 and let

0 K E Q 0
i p

be a short exact sequence of R-modules. Then for any R-module A the sequence

K ⊗R A E ⊗R A Q⊗R A 0
i⊗id p⊗id

is exact. (But the map i ⊗ id may not be injective.)
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Proof. It follows from functoriality that (p ⊗ id) ◦ (i ⊗ id) = 0, and it follows from the

fact that Q⊗R A is generated by elements of the form q ⊗ a that p⊗ id is surjective. To

show that im(i ⊗ id) = ker(p ⊗ id) it suffices to show that the induced homomorphism

p̂ : (E ⊗R A)/im(i ⊗ id)→ Q⊗R A

is an isomorphism, which we will do by exhibiting an inverse. The construction of the

inverse uses the universal property of Q ⊗R A. Suppose (q, a) is an element of Q × A.

Choose an element e ∈ M with p(e) = q. Define f (q, a) = [e ⊗ a], where the square

brackets denotes a coset of im(i ⊗ id). The definition does not depend on the choice of

e because any two choices for e will differ by an element of im(i). It is straightforward to

check that f is a bilinear homomorphism, and hence induces a homomorphism Q⊗R A→
(E ⊗R A)/im(i ⊗ id). It is also straightforward to check that this homomorphism is an

inverse to p̂. �

Example 2.3. It is easy to give an example to show that the homomorphism i ⊗ id in the

conclusion of Proposition 2.2 need not be injective. Consider the short exact sequence

0 → Z → Z → Z2 → 0. If we tensor with Z2 then we obtain the exact sequence

Z2 → Z2 → Z2 → 0 where the arrow on the left is 0 and the middle arrow is the

identity. Moreover, the same example shows that the homomorphism i∗ in the conclusion

of Proposition 2.1 need not be surjective. If we apply the functor Hom( ,Z) to the short

exact sequence 0→ Z→ Z→ Z2 → 0 we obtain the exact sequence Z← Z← Z2 ← 0

where the arrow on the left is multiplication by 2 and the middle arrow is 0.

It turns out that there are homological invariants of A, named Ext and Tor which are

constructed as (co)homology groups of certain (co)chain complexes and which can be

viewed as measuring the extent to which ⊗R A and HomR( , A) fail to be exact. We

need a definition to construct these invariants.

Definition 2.4. Let R be a commutative ring with 1, and let M be an R-module. A free

resolution of M is an exact sequence of R-modules

· · · → Fn → Fn−1 → · · ·F1 → F0 → M → 0

such that each Fn is free. Equivalently (and more usefully) a free resolution of M is a

chain complex F such that

• Each Fn is a free R-module, and the differentials are R-module homomorphisms;

• H0(F ) = M and Hn(F ) = 0 for n > 0.

Example 2.5. The most basic example of a free resolution, and the one which we are

primarily interested in, is a presentation of an abelian group A:

0→ K → F0 → A→ 0.
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Here R = Z and Fn = 0 for n > 1. To construct a presentation of the abelian group A

one chooses a set of generators. The free Z-module F0, with basis indexed by the chosen

generators, maps onto A. The relation subgroup is the kernel K of this homomorphism.

Since submodules of a free Z-module are free, the short exact sequence is a special type

of free resolution.

When the abelian group A above is replaced by an R-module M over a general commuta-

tive ring R, it is still possible to find a free R-module F0 with a surjective homomorphism

to M. The difference is that the kernel K may not be free in this situation. However, if K

is not free then one can find another free module F1 which has a surjective homomorphism

to K. If one repeats this process ad infinitum, the result is a free resolution of M.

Definition 2.6. Suppose E is a free resolution of an R-module M and F is a free resolution

of an R-module N. Let ϕ : M → N be a homomorphism. We will say that a chain map

Φ : E → F extends ϕ if the induced homomorphism Φ∗ : H0(E)→ H0(F ) agrees with ϕ.

(Here we are identifying H0(E) with M and H0(F ) with N.)

Lemma 2.7. Let F be a free R-module and let q : M → N be a homomorphism of

R-modules. If f : F → N is any homomorphism such that im(f ) ⊂ im(q) then f lifts to

a homomorphism f̃ : F → M making the following diagram commute:

M

F N
f

qf̃

Proof. Let B be a basis for F . Since F is free it suffices to define f̂ on elements of B.

For each b ∈ B we define f̂ (b) to be any element of q−1(f (b)); such an element exists

since im(f ) ⊂ im(q). �

A module satisfying the conclusion of Lemma 2.7 is said to be projective; thus free modules

are projective. An algebra class will have much more to say about projective modules.

We only mention the concept here because it is exactly what is needed to prove the next

lemma.

Lemma 2.8. Suppose E is a free resolution of an R-module M and F is a free resolution

of an R-module N. For any surjective homomorphism ϕ : M → N there exists a chain map

Φ : E → F which extends ϕ. Moreover, any two extensions of ϕ are chain homotopic.

Proof. Let en : En → En−1 and fn : Fn → Fn−1 denote the differentials of the chain

complexes E and F and let εE : Eo → H0(E) and εF : Fo → H0(F ) be the quotient

homomorphisms. Since H0(E) = M and H0(F ) = N, we view ϕ as a homomorphism
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from H0(E) to H0(F ). We construct Φ by induction, using the projective property of En.

To keep our fingers busy, here is a diagram that we will be chasing through:

· · · E2 E1 E0 H0(E) 0

· · · F2 F1 F0 H0(F ) 0

e3 e2 e1 εE

f3 f2 f1 εF

Φ2 Φ1 Φ0 ϕ
h0h1

The composition ϕ ◦ εE is surjective since both ϕ and εE are. We define Φ0 : E0 → F0

to be a lift of this surjection. Note that, since εF ◦ Φ0 ◦ e1 = ϕ ◦ εE ◦ e1 = 0, we have

im(Φ0 ◦ e1) ⊂ ker(εF ) = im(f1). For the induction step, given im(Φn−1 ◦ en) ⊂ im(fn), we

define Φn to be a lift of Φn−1 ◦ en and observe that, since fn ◦ Φn = Φn−1 ◦ en, we then

have im(Φn ◦ en+1) ⊂ ker(fn) = im(fn+1).

Now assume that we have two chain maps Φ and Φ′ which both extend ϕ. We must

construct a chain homotopy between them. Again, we do this by induction. We set

∆n = Φn −Φ′n and, to avoid special cases, we set h−1 = 0. Since Φ0 ◦ εF = Φ′0 ◦ εF = ϕ

we have im(∆0) ⊂ ker(εF ) = im(f1). Thus we may take h0 : E0 → F1 to be a lift of ∆0.

For the induction step we must to define hn so that fn+1 ◦ hn = ∆n − hn−1 ◦ en, i.e. so

that hn is a lift of ∆n − hn−1 ◦ en. To see that such a lift exists we verify that

fn ◦ (∆n − hn−1 ◦ en) = fn ◦ ∆n − fn ◦ hn−1 ◦ en
= ∆n−1 ◦ en − (∆n−1 − hn−2 ◦ en−1) ◦ en)

= 0.

�

Corollary 2.9. Suppose that E and F are free resolutions of an R-module A. Then the

homology of E⊗RA is isomorphic to that of F ⊗RA and the cohomology of HomR(E,A)

is isomorphic to that of HomR(F, A).

Proof. Take ϕ to be the identity homomorphism of A. We may extend id to get chain

maps Φ : E → F and Ψ : F → E. The compositions Φ◦Ψ and Ψ◦Φ are chain-homotopic

to the identity by Lemma 2.8. Since the functors ⊗R A and HomR( , A) are additive,

this implies that Φ⊗ id and Ψ⊗ id are inverses, as are Φ∗ and Ψ∗. �

The corollary justifies the following definition.

Definition 2.10. Let A be an R-module. If F is any free resolution of an R-module M

we define Tor∗(M,A) to be the homology of the chain complex F ⊗R A and Ext∗(M,A)

to be the cohomology of the cochain complex HomR(F, A).

Note that Tor0(M,A) = M ⊗R A and Ext0(M,A) = HomR(M,A).

7



Example 2.11. Once again, let’s take R = Z, so we are considering abelian groups, and

compute a few examples. Since subgroups of free abelian groups are free, we can take

our free resolutions to be presentations.

To compute Tor1(Zm,Z) and Ext1(Zm,Z) we begin with the presentation 0 → Z ×m−→
Z→ Zm → 0. Applying ⊗ Z gives an isomorphic chain complex, namely

· · · → 0→ Z ×m−→ Z.

Thus Tor1(Zm,Z) = 0, since the kernel of x 7→ mx is trivial. Applying Hom( ,Z) gives

the dual cochain complex,

Z ×m−→ Z→ 0→ · · · .
Since the cokernel of x 7→ mx is Zm, we have Ext1(Zm,Z) = Zm,

Computing Tor1(Z,Zn) and Ext1(Z,Zn), or Tor1(F,Zn) and Ext1(F,Zn) for a free module

F , is even easier since we start with the trivial presentation 0 → 0 → F
id→ F → 0, for

which the 1-dimensional chain group is 0. Thus the result is 0 for both of these cases as

well.

It is a little more interesting to consider Tor1(Zm,Zn) and Ext1(Zm,Zn). Here we start

with the presentation 0→ Z ×m−→ Z→ Zm → 0. Applying ⊗Zn gives the chain complex

Zn
×m−→ Zn. Thus Tor1(Zm,Zn) is the kernel of Zn

×m−→ Zn. Writing pm+qn = r , where r

is the greatest common divisor (m, n), we see that in Zn the image of x 7→ mx is the cyclic

group of order n/r generated by r , and the kernel is a cyclic subgroup of order r . Thus

Tor1(Zm,Zn) = Zr . Applying Hom( ,Zn) gives the cochain complex Zn
×m←− Zn. Since

the cokernel of x 7→ mx is again a cyclic group of order r we have Ext1(Zm,Zn) = Zr .

3. Universal Coefficient Theorems

We now specialize to the case R = Z; we will only work with abelian groups in this section.

Start with a chain complex C of free abelian groups with differential ∂C:

· · · → Cn → Cn−1 → · · ·C1 → C0 → 0.

We recall the usual definitions:

Zn = ker(∂C|Cn : Cn → Cn−1);

Bn = im(∂C|Cn : Cn → Cn−1);

Hn = Zn/Bn.

The operation of forming the homology groups of a chain complex can be viewed as

a functor from chain complexes and chain maps to graded abelian groups and graded

homomorphisms. Let’s denote this functor by H. We can think of the groups H∗(C;G)

and H∗(C;G) as being obtained by applying the functor H ◦ F to a chain complex C,

where F denotes one of the additive functors ⊗ G or Hom( , G). Our goal in the
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next two sections is to compare H◦F(C) with F ◦H(C). It turns out that the homology

functor H does not quite commute with either of the functors F , but it almost does and

the comparison leads to descriptions of H∗(C;G) and H∗(C;G) in terms of H∗(C).

3.1. Two short exact sequences

By just rewriting our definitions we obtain two families of short exact sequences:

(1) 0→ Zn → Cn → Bn−1 → 0.

and

(2) 0→ Bn → Zn → Hn → 0

The analysis we will carry out here involves viewing each of these short exact sequences

in a slightly tricky way. We will view the presentation (2) as a free resolution of the group

Hn.

We will view (1) as a short exact sequence of chain complexes

0→ Z → C → B → 0

The chain complex Z has Zn as its nth graded group and has the zero map as its differ-

ential. Since ∂C is zero on each Zn, the differential of Z is just the restriction of ∂C. The

quotient chain complex B has as its nth graded group Bn−1 (note the shift by 1!). Since

∂C is also zero on Bn, the differential on B will be the zero map as well.

This gives the following diagram, which is easily checked to be commutative:

0 0

· · · Zn+1 Zn · · ·

· · · Cn+1 Cn · · ·

· · · Bn Bn−1 · · ·

0 0

∂C ∂C

0

∂C

0

3.2. A long exact sequence

Since the chain complexes Z, C and B are free, when we apply one of our additive functors

to the short exact sequence

0→ Z → C → B → 0

9



we obtain a new short exact sequence of chain complexes. Here we examine what can be

learned from the associated long exact sequence. In the case of ⊗ G we have

Hn+1(B;G) Hn(Z;G) Hn(C;G) Hn(B;G) Hn−1(Z;G)
∂ ∂

Since the chain complexes B and Z have trivial differential, the same is true of B⊗G and

Z⊗G. For a chain complex with trivial differential, the homology groups are the same as

the chain groups. Thus, after accounting for the shift in grading for the chain complex

B, we can rewrite the sequence above as

Bn ⊗ G Zn ⊗ G Hn(C;G) Bn−1 ⊗ G Zn−1 ⊗ G
∂ ∂

As happens with any long exact sequence, we obtain a sequence of short exact sequences

which describe the groups Hn(C;G) as extensions:

(3.2.1) 0→ coker(∂n)→ Hn(C;G)→ ker(∂n−1)→ 0,

where ∂k : Bk ⊗ G → Zk ⊗ G denotes the connecting homomorphism of the long exact

sequence.

If we look closely we can see that this short exact sequence splits, which implies that the

group Hn(C;G) is the direct sum of the cokernel of ∂n and the kernel of ∂n−1. To see

this we first observe that the sequence (1) splits, since the abelian groups Zn, Bn and Cn

are all free. This implies that there is a projection p : Cn → Zn such that the composition

of p with the inclusion j : Zn → Cn is the identity on Zn. After applying ⊗ G we

have (p ⊗ id) ◦ (j ⊗ id) = id. Restricting p ⊗ id to cycles in Cn ⊗ G we get an induced

homomorphism p∗ : Hn(C;G)→ coker(∂) such that p∗ ◦ j∗ = id. This gives a splitting.

It is important to observe that this splitting is not “natural”. It can only be constructed at

the chain level; it is not necessarily preserved by the homomorphisms induced on homology

by chain maps.

If we apply the functor Hom( , G) to the same chain complex C and proceed in a

completely analogous manner using the long exact cohomology sequence, we obtain the

split short exact sequence

(3.2.2) 0→ coker(δn−1)→ Hn(C;G)→ ker(δn)→ 0,

where δk : Hom(Zk , G) → Hom(Bk , G) denotes the connecting homomorphism of the

long exact sequence.

3.3. A short free resolution

Next, by using the short exact sequence (2) we will show that coker(∂n) can be identified

with Hn ⊗ G while ker(∂n−1) can be identified with Tor1(Hn−1, G). Similarly we will show

that ker(δn) can be identified with Hom(Hn, G) and coker(δn−1) can be identified with

Ext1(Hn, G).
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When we apply our additive functors to the presentation (2), viewed as a free resolution

of Hn, we obtain the following two exact sequences:

(3.3.1) 0→ Hom(Hn, G)→ Hom(Cn, G)
i∗→ Hom(Zn, G)→ Ext1(Hn, G)→ 0

and

(3.3.2) 0→ Tor1(Hn, G)→ Zn ⊗ G
i∗→ Cn ⊗ G → Hn ⊗ G → 0

Thus the descriptions of the kernel and cokernel of ∂ and δ will follow from the following

lemma.

Proposition 3.4. Let ∂ and δ denote the connecting homomorphisms from the long

exact sequences discussed in section 3.2. Let i∗ : Z ⊗G → C ⊗G and i∗ : Hom(C,G)→
Hom(Z,G) be induced by the inclusion i : Z → C. Then we have i∗ = ∂ and i∗ = δ.

Proof. The proof is tautological; we just recall the construction of the connecting homo-

morphism in the long exact sequence. In the case of ⊗ G the procedure is to take a

class represented by a generator b ⊗ g ∈ Bn ⊗ G; choose an element x ∈ Cn+1 ⊗ G such

that ∂C ⊗ id(x) = b ⊗ g; and apply ∂C ⊗ id to x , giving us back b ⊗ g. We observe that

this element is in fact contained in Zn⊗ g, and define its class to be image of the class of

b⊗ g. Thus the connecting homomomorphism is nothing other than the homomorphism

induced by inclusion.

For Hom( , G) the construction of the connecting homomorphism is to take a represen-

tative cocycle f ∈ Hom(Zn, G); extend it to f̂ ∈ Hom(Cn, G) using the splitting projection

Cn → Zn; and apply δ to get f̂ ◦ ∂C. Next we find an element of Hom(Bn, G) which pulls

back to f̂ ◦ ∂C under ∂C. The restriction of f to Bn is such an element. So, again, the

connecting homomorphism is induced by inclusion. �

We end the story with the statements of the universal coefficient theorems for homology

and cohomology. (Homology and cohomology groups with negative dimensions are taken

to be 0 here.)

Theorem 3.5. Let C be a chain complex and G an abelian group. Then for each integer

n there is a split short exact sequence

0→ Tor1(Hn−1(C), G)→ Hn(C;G)→ Hn(C)⊗ G → 0.

Proof. According to (3.3.2) we have Tor1(Hn−1(C), G) = ker(i∗) and Hn⊗G = coker(i∗).

But according to Proposition 3.4 we have i∗ = ∂. Thus the theorem follows from (3.2.1).

�
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Theorem 3.6. Let C be a chain complex and G an abelian group. Then for each integer

n there is a split short exact sequence

0→ Ext1(Hn−1(C), G)→ Hn(C;G)→ Hom(Hn(C), G)→ 0.

Proof. According to (3.3.1) we have Ext1(Hn−1(C), G) = coker(i∗) and Hom(Hn, G) =

ker(i∗). But according to Proposition 3.4 we have i∗ = δ. Thus the theorem follows from

(3.2.2). �
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