Some sources and inspiration for this treatment are the advanced calculus or analysis books by Dieudonné, Loomis & Sternberg, and Spivak, and notes and books by Milnor.

1. The derivative

Definition. Let $U \subset \mathbb{R}^m$ be an open set, $a \in U$, and $f : U \rightarrow \mathbb{R}^n$. The map f is differentiable at a if there is a linear map $\lambda \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ with

$$\lim_{x \to a} \frac{|f(x) - f(a) - \lambda(x - a)|}{|x - a|} = 0.$$

Lemma. If there is such a λ it is unique.

Proof. Let λ and λ_1 both satisfy the definition. Then

$$|(\lambda - \lambda_1)(x - a)| \leq |f(x) - f(a) - \lambda(x - a)| + |f(x) + f(a) + \lambda_1(x - a)|$$

hence $|(\lambda - \lambda_1)(x - a)|/|x - a| \to 0$ as $x \to a$. For $v \neq 0$, letting $x = a + v \in U$,

$$|(\lambda - \lambda_1)(v)|/|v| = |(\lambda - \lambda_1)(tv)|/|tv| \to 0$$

as $t \to 0$.

Therefore $\lambda(v) = \lambda_1(v)$.

When f is differentiable at a this unique linear map is denoted $Df(a)$.

2. The case $m = n = 1$

Let $f : \mathbb{R} \rightarrow \mathbb{R}$ and assume $f'(a)$ exists. Then

$$\frac{|f(x) - f(a) - f'(a)(x - a)|}{|x - a|} = \left| \frac{f(x) - f(a)}{x - a} - f'(a) \right| \to 0$$

as $x \to a$

so $Df(a)(v) = f'(a)v$. The 1×1-matrix for the linear map $Df(a)$ has entry $f'(a)$.

3. The case $n = 1$ of real-valued functions, partial derivatives

Proposition. If $f : U \rightarrow \mathbb{R}$ is differentiable at $a \in U \subset \mathbb{R}^m$, then the partial derivatives of f exist at a and determine $Df(a)$.

Hence for some \(\leq \varphi \) let \(\xi \) be continuous at \(a \) given by the following theorem, but this condition is not necessary. The gradient of \(f \) at \(a \) is the vector \(\text{grad} f(a) = \sum_i D_i f(a) e_i \) and, if \(f \) is differentiable at \(a \),

\[
Df(a) v = D_v f(a) = \text{grad} f(a) \cdot v
\]

For \(f \) to be differentiable at \(a \) it is necessary, but not sufficient, for the partial derivatives to exist at \(a \). It is even necessary, but not sufficient, for the directional derivative to exist at \(a \) for all \(v \) and to define a linear function. A sufficient condition for \(f \) to be differentiable is given by the following theorem, but this condition is not necessary.

Theorem. Let \(f : U \longrightarrow \mathbb{R} \), \(U \) open in \(\mathbb{R}^m \). Suppose the partial derivatives \(D_i f \) are each continuous at \(a \in U \). Then \(f \) is differentiable at \(a \) and \(Df(a) v = \sum_i D_i f(a) v_i \).

Proof. Given \(\varepsilon > 0 \) there exists \(\delta > 0 \) such that

\[
|x - a| < \delta \Rightarrow |D_i f(x) - D_i f(a)| < \varepsilon \text{ for all } i.
\]

Let \(\xi_i = (x_1, \ldots, x_i, a_{i+1}, \ldots, a_m); \xi_0 = a, \xi_m = x \). Then \(|\xi_i - a| < \delta \) and

\[
f(x) - f(a) = \sum_{i=0}^{m} f(\xi_i) - f(\xi_{i-1}).
\]

Let \(\varphi_i(t) = f(\xi_{i-1} + t e_i) \). Then

\[
f(\xi_i) - f(\xi_{i-1}) = \varphi_i(x_i - a_i) - \varphi_i(0) = \varphi'(t_i)(x_i - a_i) = D_i f(\xi_{i-1} + t e_i)(x_i - a_i)
\]

for some \(t_i \) with \(0 < t_i < x_i - a_i \), by the mean value theorem in one variable. Now

\[
\left| f(x) - f(a) - \sum D_i f(a)(x_i - a_i) \right| \leq \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(a)(x_i - a_i)|
\]

\[
\leq \sum |f(\xi_i) - f(\xi_{i-1}) - D_i f(\xi_{i-1} + t_i e_i)(x_i - a_i)| + \sum |D_i f(\xi_{i-1} + t_i e_i) - D_i f(a)|(x_i - a_i)|
\]

\[
\leq 0 + \varepsilon |x - a|.
\]

Hence \(\frac{|f(x) - f(a)|}{|x - a|} \rightarrow 0 \) as \(x \rightarrow a \) where \(\lambda \) is the linear map defined by \(\lambda(v) = \sum D_i f(a) v_i \). Therefore \(f \) is differentiable at \(a \).
4. The derivative of linear and bilinear maps

Lemma. If f is a linear map then $Df(a) = f$.

Proof. Since f is linear, $f(x) - f(a) - f(x - a) = 0$.

Lemma. If U, V, W are vector spaces and $\beta : U \times V \to W$ is bilinear, then

$$D\beta(a, b)(u, v) = \beta(a, v) + \beta(u, b).$$

Proof. Note that the map $\ell(a, b)$ defined by $\ell(a, b)(u, v) = \beta(a, v) + \beta(u, b)$ is linear from $U \times V \to W$ and

$$\beta(a + u, b + v) - \beta(a, b) - \ell(a, b)(u, v) = \beta(u, v).$$

The norm $|(u, v)| = \sqrt{|u|^2 + |v|^2}$, and $|u||v| \leq \max\{|u|^2, |v|^2\} \leq |u|^2 + |v|^2$, hence

$$\beta(u, v) = |u||v|\beta(u/|u|, v/|v|) \leq |(u, v)|^2 \beta(u/|u|, v/|v|)$$

for $u \neq 0, v \neq 0$.

Therefore $|\beta(u, v)|/|(u, v)| \to 0$ as $(u, v) \to (0, 0)$.

Examples of bilinear maps $\beta : \mathbb{R}^\ell \times \mathbb{R}^m \to \mathbb{R}^n$.

- $\ell = m = n = 1$, $\beta(r, s) = rs$
- $\ell = 1, m = n$, $\beta(r, u) = ru$,
- $\ell = m, n = 1$, $\beta(u, v) = u \cdot v$,
- $\ell = m = n = 3$, $\beta(u, v) = u \times v$.

5. A norm on $\text{Hom}(\mathbb{R}^m, \mathbb{R}^n)$

Let e_1, \ldots, e_m be the standard orthonormal basis for \mathbb{R}^m and $\bar{e}_1, \ldots, \bar{e}_n$ be the standard orthonormal basis for \mathbb{R}^n. Let $x = \sum_i x_i e_i \in \mathbb{R}^m$, so $x_i = x \cdot e_i$. Let $\ell \in \text{Hom}(\mathbb{R}^m, \mathbb{R}^n)$ and set $\ell_i = \ell(e_i) \cdot \bar{e}_j$. Then $\ell(x) = \sum_i x_i \ell(e_i) = \sum_j \sum_i \ell_i x_i \bar{e}_j$.

Proposition. If $|\ell_i| \leq k$ for all i, j, then $|\ell(x)| \leq \sqrt{mn} k|x|$.

Proof. By Cauchy’s inequality, $|\sum_i \ell_i x_i| \leq \left(\sum_i (\ell_i^2)^2\right)^{1/2} |x| \leq \sqrt{m} k|x|$. Then

$$|\ell(x)| = \left\{\sum_j \left(\sum_i \ell_i x_i\right)^2\right\}^{1/2} \leq \sqrt{mn} k|x|.$$

The continuous real-valued function $|\ell(x)|$ is bounded on the compact unit sphere, $\{x : |x| = 1\} \subset \mathbb{R}^m$, and attains its bound.

Definition. For a linear map ℓ, define $\|\ell\| = \sup\{|\ell(x)| : |x| = 1\}$.

Corollary. (i) $|\ell(x)| \leq \|\ell\| |x|$ and (ii) $\|\ell\| \leq \sqrt{mn} k$.

6. Lipschitz continuity of differentiable functions

Proposition. If \(f : U \rightarrow \mathbb{R}^n \) where \(U \) is open in \(\mathbb{R}^m \) and \(f \) is differentiable at \(a \), then there exist \(\delta > 0 \) and \(k > 0 \) such that \(|x - a| < \delta \Rightarrow |f(x) - f(a)| \leq k|x - a|\).

Proof. There is a linear map \(\lambda \) such that the function \(\varphi(x) = f(x) - f(a) - \lambda(x - a) \) satisfies \(|\varphi(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \). Therefore there is a \(\delta > 0 \) such that \(|\varphi(x)| \leq |x - a| \) for \(|x - a| < \delta \). Then \(|f(x) - f(a)| = |\lambda(x - a) + \varphi(x)| \leq (||\lambda|| + 1)|x - a| \) for \(|x - a| < \delta \). Take \(k = ||\lambda|| + 1 \).

The conclusion of the Proposition is called Lipschitz continuity at \(a \); it implies that \(f \) is continuous at \(a \).

7. The chain rule

Theorem. If \(a \in U \subset \mathbb{R}^m, b \in V \subset \mathbb{R}^n, f : U \rightarrow V, f(a) = b, g : V \rightarrow \mathbb{R}^p, f \) is differentiable at \(a \), and \(g \) is differentiable at \(b \); then \(g \circ f \) is differentiable at \(a \) and

\[
D(g \circ f)(a) = Dg(b) \circ Df(a).
\]

Proof. (See Spivak, p. 19.) Let \(\lambda = Df(a), \mu = Dg(b) \) and set

\[
\varphi(x) = f(x) - f(a) - \lambda(x - a) \\
\psi(y) = g(y) - g(b) - \mu(y - b) \\
\rho(x) = g(f(x)) - g(b) - \mu(\lambda(x - a)).
\]

We have

(i) \(|\varphi(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \),

(ii) \(|\psi(y)|/|y - b| \rightarrow 0 \) as \(y \rightarrow b \).

From the definitions,

\[
\rho(x) = g(f(x)) - g(b) - \mu(\lambda(x - a) - \varphi(x)) \\
= [g(f(x)) - g(b) - \mu(f(x) - f(a))] + \mu(\varphi(x)) \\
= \psi(f(x)) + \mu(\varphi(x)).
\]

First \(|\mu(\varphi(x))| \leq ||\mu|||\varphi(x)|\), so by (i) \(|\mu(\varphi(x))|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \).

Second, by Proposition 6, there are \(k > 0, \delta > 0 \) such that

\(|x - a| < \delta \Rightarrow |f(x) - f(a)| \leq k|x - a|\).

By (ii), for any \(\varepsilon > 0 \) there is a \(\delta_1 > 0 \) such that

\(|f(x) - f(a)| < \delta_1 \Rightarrow |\psi(f(x))| < \varepsilon|f(x) - f(a)|\).

So for \(0 \neq |x - a| < \min\{\delta, \delta_1/k\} \) we have \(|\psi(f(x))|/|x - a| < \varepsilon k\). Hence \(|\rho(x)|/|x - a| \rightarrow 0 \) as \(x \rightarrow a \) which gives the result.
8. Sample computations

(a) Let \(f(x) = x \cdot x = \beta \circ \Delta(x) \) where \(\Delta(x) = (x, x) \) is linear and \(\beta(x, y) = x \cdot y \). Then

\[
Df(a)(u) = D(\beta(\Delta(a))) \circ D\Delta(a)(u) = D\beta(a, a)(u, u) = \beta(a, u) + \beta(u, a).
\]

Since \(\beta \) is symmetric, \(Df(a)(u) = 2a \cdot u \) and \(\text{grad } f(a) = 2a \).

If \(g(x) = |x - p| = \sqrt{f(x - p)} \),

\[
Dg(a)(u) = \frac{1}{2\sqrt{f(a - p)}} Df(a - p)(u) = \frac{a - p}{|a - p|} u \text{ for } a \neq p.
\]

So, for \(x \neq p \), \(\text{grad } g(x) = \frac{x - p}{|x - p|} \), the unit vector at \(x \) pointing away from \(p \).

(b) The derivative of a sum.

Lemma. Let \(f \) and \(g : U \longrightarrow R^n \) be differentiable at \(a \in U \subset R^m \).

Define \((f, g) : U \longrightarrow R^n \times R^n \) by \((f, g)(x) = (f(x), g(x)) \). Then

\[
D(f, g)(a) = (Df, Dg)(a).
\]

Proof. Let \(\lambda = Df(a), \ \varphi(x) = f(x) - f(a) - \lambda(x - a), \ \mu = Dg(a), \) and \(\psi(x) = g(x) - g(a) - \mu(x - a) \). Then \((\varphi, \psi)(x) = (f, g)(x) - (f, g)(a) - (\lambda, \mu)(x - a) \) and

\[
\frac{|(\varphi, \psi)(x)|}{|x - a|} = \sqrt{\frac{|\varphi(x)|^2}{|x - a|^2} + \frac{|\psi(x)|^2}{|x - a|^2}} \rightarrow 0 \text{ as } x \rightarrow a.
\]

Define the linear map \(s : R^n \times R^n \longrightarrow R^n \) by \(s(y_1, y_2) = y_1 + y_2 \). Now \((f + g)(x) = f(x) + g(x) = s \circ (f, g)(x) \). Hence the derivative of a sum is the sum of the derivatives:

\[
D(f + g) = Df + Dg.
\]

(c) The set \(M(n) \) of \(n \times n \)-matrices is an \(n^2 \)-dimensional vector space under addition and scalar multiplication and a ring under matrix multiplication. Let \(\beta(A, B) = AB \) and \(t(A) = A^t \) be the transpose. The maps \(t \) and \((I, t) \) are linear as maps of vector spaces where \(I \) is the identity linear map. On products \(t \) satisfies \(t(AB) = t(B)t(A) \). Define \(f : M(n) \longrightarrow M(n) \) by \(f(A) = AA^t \), so \(f = \beta \circ (I, t) \).

Let \(O(n) \subset M(n) \) be the orthogonal group, \(O(n) = \{ A : f(A) = I \} \). Thus \(A \in O(n) \) means \(A \) is invertible and \(A^t = A^{-1} \).

Exercise. This is the computational part of a proof that \(O(n) \) is a manifold of dimension \(n(n - a)/2 \). Show:

- \(f(A) \) is symmetric, \(f(A) = t(f(A)) \).
- \(Df(A)(M) = AM^t + MA^t \).

 If \(A \in O(n) \), then \(Df(A) \) maps \(M(n) \) onto the vector space of symmetric matrices.

[Hint: Given a symmetric \(S \), take \(M = \frac{1}{2} SA \).]
9. Differentiability of maps to \(\mathbb{R}^n \)

The results of §3 extend to maps to \(\mathbb{R}^n \).

Proposition. If \(f : U \rightarrow \mathbb{R}^n \) is differentiable at \(a \in U \) then the partial derivatives of the components \(D_i f_j \) exist at \(a \) and are the entries in the matrix representing \(Df(a) \). If all the partials are continuous at \(a \) then \(f \) is differentiable at \(a \).

Proof. (See Spivak, p. 21, and for notation §§3, 5.) Define the linear projection map \(\pi_j : \mathbb{R}^n \rightarrow \mathbb{R} \) by \(\pi_j(y) = y \cdot \varepsilon_j \). The \(j \)th component of \(f \) is \(f_j = \pi_j \circ f \), \(f(x) = \sum_j f_j(x) \varepsilon_j \) and

\[
Df_j(a) = D\pi_j(f(a)) \circ Df(a) = \pi_j \circ Df(a).
\]

The partial derivatives \(\frac{\partial f}{\partial x_i}(a) = D_i f_j(a) = Df_j(a)(e_i) = Df(a)(e_i) \cdot \varepsilon_j \).

If \(u = \sum_i u_i e_i \), then \(Df(a)u = \sum_i \sum_j D_i f_j(a) u_i \varepsilon_j \).

Introducing the Jacobian matrix we write \(Df(a)u \) as a matrix product:

\[
Df(a)u = \begin{pmatrix} Df_1(a)u \\ \vdots \\ Df_n(a)u \end{pmatrix} = \begin{pmatrix} D_1 f_1(a) & \ldots & D_m f_1(a) \\ \vdots & \ddots & \vdots \\ D_1 f_n(a) & \ldots & D_m f_n(a) \end{pmatrix} \begin{pmatrix} u_1 \\ \vdots \\ u_m \end{pmatrix}.
\]

If all the partials are continuous at \(a \), by §3 each \(D_i f(a) \) exists and by §8(b) \(Df(a) \) exists.

When \(m = 1 \), \(f(t) \) is a path in \(\mathbb{R}^n \) and we define the velocity vector \(f'(t) = Df(t)(e_1) \).

10. Mean value theorems

Proposition. If \(U \subset \mathbb{R}^m \) is convex, \(f : U \rightarrow \mathbb{R} \) is differentiable, and \(a, x \in U \), then \(f(x) - f(a) = Df(\zeta)(x - a) \) where \(\zeta = a + t_0(x - a) \) for some \(0 < t_0 < 1 \).

Proof. Let \(\varphi(t) = f(a + t(x - a)) \). By the chain rule \(\varphi'(t) = Df(a + t(x - a))(x - a) \).

By the one-variable mean value theorem

\[
f(x) - f(a) = \varphi(1) - \varphi(0) = \varphi'(t_0) = Df(\zeta)(x - a)
\]

where \(\zeta = a + t_0(x - a) \) for some \(0 < t_0 < 1 \).

Corollary. If \(\|Df(\zeta)\| \leq k \) for any \(\zeta \in U \), then \(\|f(x) - f(a)\| \leq k|x - a| \).

This follows from the Proposition and Corollary §5(i).

The Proposition is not true in general for maps to \(\mathbb{R}^n \), \(n > 1 \). For example let \(f : \mathbb{R} \rightarrow \mathbb{R}^3 \) describe a helix about the vertical axis and take \(x \) vertically above \(a \). Then \(x - a \) points straight up while \(Df(t)(u) \) never does. The following Theorem extends the result of the Corollary to maps to \(\mathbb{R}^n \). It says \(f \) is Lipschitz continuous on \(U \).

Theorem. If \(U \subset \mathbb{R}^m \) is convex, \(f : U \rightarrow \mathbb{R}^n \) is differentiable on \(U \), \(a, x \in U \), and

\[
\left| \frac{\partial f_j}{\partial x_i} \right| \leq \frac{k}{\sqrt{mn}} \quad \text{on } U \text{ for all } i, j, \text{ then } |f(x) - f(a)| \leq k|x - a|.
\]

Proof. By the Proposition \(f_j(x) - f_j(a) = Df_j(\zeta_j)(x - a) \). By §5 applied to the real-valued function \(f_j \), \(\|Df_j(\zeta_j)\| \leq \frac{k}{\sqrt{n}} \). By the Corollary, \(|f_j(x) - f_j(a)| \leq \frac{k}{\sqrt{n}} |x - a| \). Then \(|f(x) - f(a)| \leq k|x - a| \) as in §5.
10a. Alternate proof of the mean value theorem

In §10 we used the one-variable mean value theorem. The following proof gives both the Corollary and Theorem above without assuming the one-variable theorem and does not depend on bounds on the partial derivatives. See Loomis & Sternberg, p. 148, or Dieudonné, p. 153.

Theorem. Let \(f : [a, b] \rightarrow \mathbb{R}^n \) be continuous on \([a, b]\) and differentiable on \((a, b)\). Assume \(|f'(t)| \leq k\) for \(a < t < b\), where (see §9) \(f'(t) = D_1f(t)(e_1) \). Then

\[
|f(b) - f(a)| \leq k(b - a).
\]

Proof. Fix \(\varepsilon > 0 \). Let \(A = \{ x \in [a, b] : |f(x) - f(a)| \leq (k + \varepsilon)(x - a) + \varepsilon \} \).

1. Since \(f \) is continuous at \(a \) there is a \(\delta > 0 \) such that \(|f(x) - f(a)| \leq \varepsilon \) for \(a \leq x < a + \delta \)

so \(x \in A \) for some \(x > a \).

2. Set \(\ell = \sup A \). Either \(\ell \in A \) or for any \(\delta > 0 \) there is a \(t \) with \(\ell - \delta < t \leq \ell \) and \(t \in A \). But then, by the continuity of \(f \) at \(\ell \), \(\ell \in A \).

3. If \(\ell < b \) then \(f'(\ell) \) exists and \(|f'(\ell)| \leq k \). Hence there is a \(\delta > 0 \) such that

\[
\ell \leq t < \ell + \delta \Rightarrow |f(t) - f(\ell)| \leq (k + \varepsilon)(t - \ell).
\]

Then

\[
|f(t) - f(a)| \leq |f(t) - f(\ell)| + |f(\ell) - f(a)| \\
\leq (k + \varepsilon)(t - \ell) + (k + \varepsilon)(\ell - a) + \varepsilon \\
= (k + \varepsilon)(t - a) + \varepsilon.
\]

and hence \(t \in A \) for some \(t > \ell \), a contradiction. Therefore \(\ell = b \) and, as in (2), \(b \in A \).

Since \(\varepsilon > 0 \) is arbitrary, \(|f(b) - f(a)| \leq k(b - a) \).

Corollary. Let \(U \subset \mathbb{R}^m \) be convex, \(a, b \in U \), \(f : U \rightarrow \mathbb{R}^n \) be differentiable, and assume \(\|Df(x)\| \leq k \) for \(x \in U \). Then

\[
|f(b) - f(a)| \leq k|b - a|.
\]

Proof. Define \(c : \mathbb{R} \rightarrow \mathbb{R}^n \) by \(c(t) = tb + (1 - t)a \). Then \(c'(t) = b - a \) and \(f \circ c(1) - f \circ c(0) = f(b) - f(a) \). For \(0 \leq t \leq 1 \), \(c(t) \in U \) and \(D(f \circ c)(t)(e_1) = Df(c(t))(b - a) \), so

\[
|(f \circ c)'(t)| \leq \|Df(c(t))\| \|b - a\| \leq k|b - a|.
\]

The result follows from the Theorem.
11. The inverse function theorem

Definition. A function $f : U \to \mathbb{R}^n$ is said to be of class C^1 if the partial derivatives exist and are continuous everywhere on U, f is of class C^k if the partial derivatives of orders k and less are continuous, and f is C^∞ if it is C^k for all positive integers k.

Theorem. Given $a \in U \subset \mathbb{R}^n$, U open, and a C^1 function $f : U \to \mathbb{R}^n$ with $f(a) = b$ such that $Df(a)$ is invertible, there are neighborhoods V of a, $V \subset U$, and W of b and a unique C^1 map $g : W \to V$ such that the restriction $f|V$ and g are inverses. The derivative of g is $Dg(y) = Df(g(y))^{-1}$. Further, if f is $C^k (1 \leq k \leq \infty)$ then g is also.

Proof. (1) Define $F(x, y) = x + Df(a)^{-1} (y - f(x))$ on $U \times \mathbb{R}^n$. Let $D_1 F(a, b)$ denote the derivative of the function $x \mapsto F(x, b)$ at $x = a$. Then

$$F(a, b) = a + Df(a)^{-1} (b - f(a)) = a,$$

$$D_1 F(x, y) = I - Df(a)^{-1} \circ Df(x), \text{ and }$$

$$D_1 F(a, y) = I - Df(a)^{-1} \circ Df(a) = 0.$$

$D_1 F(x, y)$ does not depend on y and is the zero map for $x = a$. Hence for x near a, $Df(x)$ is invertible and the entries in matrix $D_1 F(x, y)$ are small. Choose $k > 0$ so that:

(i) $B_k(a) \subset U$ and $Df(x)$ is invertible for $x \in B_k(a)$, and

$$\|D_1 F(x, y)\| \leq \frac{1}{2} \text{ for } x \in B_k(a).$$

(ii) $x, \xi \in B_k(a) \Rightarrow |F(x, y) - F(\xi, y)| \leq \frac{1}{2} |x - \xi|$ using the mean value theorem for the function $x \mapsto F(x, y)$. Since

$$|F(a, y) - a| = |Df(a)^{-1} (y - b)| \leq \|Df(a)^{-1}\| |y - b|,$$

if we set $\delta = \frac{k}{2\|Df(a)^{-1}\|}$ we have:

(iii) $y \in B_\delta(b) \Rightarrow F(a, y) \in B_{k/2}(a)$

and the same implication for the closed balls.

(2) Let \mathcal{F} be the set of continuous functions $h : B_\delta(b) \to B_k(a)$ such that $h(b) = a$. For $h \in \mathcal{F}$ define $T h(y) = F(h(y), y)$. Then $T h(b) = F(a, b) = a$. For $y \in B_\delta(b)$,

$$|T h(y) - a| = |F(h(y), y) - a| \\ \leq |F(h(y), y) - F(a, y)| + |F(a, y) - a| \\ \leq \frac{1}{2} |h(y) - a| + \frac{k}{2} \leq k \text{ by (ii) and (iii)}.$$
Hence \(Th(y) \in \overline{B_k(a)} \) so \(Th \in \mathcal{F} \) and \(T : \mathcal{F} \rightarrow \mathcal{F} \). The same argument, using the open version of (iii), shows \(y \in B_\delta(b) \Rightarrow T\gamma(y) \in B_k(a) \).

(3) \(T \) has a fixed point.

Define a sequence of functions in \(\mathcal{F} \) by \(g_0(y) = a \) and \(g_{n+1}(y) = Tg_n(y) = F(g_n(y), y) \). Note that \(g_1 \) is as defined in the plan. To shorten notation, temporarily fix \(y \) and set \(x_n = g_n(y) \). We have \(x_0 = a, x_1 = F(a, y) \), and by (iii) \(|x_1 - x_0| \leq k/2 \).

\[
|x_{n+1} - x_n| = |F(x_n, y) - F(x_{n-1}, y)| \leq \frac{1}{2} |x_n - x_{n-1}| \leq \cdots \leq \frac{1}{2^n} |x_1 - x_0| \leq \frac{k}{2^{n+1}},
\]

\[
|x_m - x_n| \leq |x_m - x_{m-1}| + \cdots + |x_{n+1} - x_n| \leq \left(\frac{1}{2m} + \cdots + \frac{1}{2^{n+1}} \right) k < \frac{k}{2^n},
\]

for \(n < m \). Therefore \(\{x_n\} \) is a Cauchy sequence.

Let \(x = \lim x_n \). Since each \(x_n \in B_k(a), x \in \overline{B_k(a)} \). Define the map

\[
g : \overline{B_\delta(b)} \rightarrow \overline{B_k(a)} \text{ by } g(y) = x = \lim_{n \rightarrow \infty} g_n(y).
\]

Since \(|g(y) - g_n(y)| \leq \frac{k}{2^n} \), the sequence \(\{g_n\} \) converges uniformly on \(\overline{B_\delta(b)} \), so \(g \) is continuous and \(g \in \mathcal{F} \). Since \(F \) is continuous, \(Tg = g \):

\[
g(y) = \lim g_n(y) = \lim F(g_n(y), y) = F(\lim g_n(y), y) = F(g(y), y) = Tg(y).
\]

(4) \(g \) is a unique local inverse of \(f \).

Set \(W = B_\delta(b) \) and \(V = B_k(a) \cap f^{-1}(W) \subset U \). \(V \) and \(W \) are neighborhoods of \(a \) and \(b \) respectively. If \(y \in W \), by (3) \(Tg(y) = g(y) \) and by the definition of \(Tg, g(y) = g(y) + Df(a)^{-1}(y - f(g(y))) \). Hence \(f(g(y)) = y \). Then by (2), \(g(y) \in V, g : W \rightarrow V, \) and \(f \circ g = 1_W \).

If \(x, \xi \in V \) and \(f(x) = f(\xi) = y \in W \), then \(F(x, y) = x \), and \(F(\xi, y) = \xi \). By (ii) \(|x - \xi| \leq \frac{1}{2} |x - \xi| \), hence \(x = \xi \). Therefore \(f \) is one-to-one on \(V \). If \(x \in V \), let \(y = f(x) \in W \) and let \(\xi = g(f(x)) \in V \). Now \(f(\xi) = f(g \circ f(x)) = f \circ g(f(x)) = f(x) \). Therefore \(x = \xi, g(f(x)) = x \), and \(g \circ f = 1_V \).

Let \(h \) be another inverse of \(f \) with \(h(b) = a \). Let both \(h \) and \(g \) be defined on \(W_1 \subset W \) and set \(V_1 = B_k(a) \cap f^{-1}(W_1) \subset V \). For \(y \in W_1 \), let \(x = g(y) \), and \(\xi = h(y) \). Since \(g \) and \(h \) are right inverses of \(f, f(x) = f(\xi) \). Since \(f \) is 1-1, \(x = \xi \) and hence \(g = h \) on \(W_1 \).

(5) \(g \) is Lipschitz continuous.

Let \(g(y) = x, g(\eta) = \xi \) for \(y, \eta \in B_\delta(b) \). Since \(g = Tg, x = F(x, y) \) and \(\xi = F(\xi, \eta) \). Then

\[
|x - \xi| = |F(x, y) - F(\xi, \eta)| \leq |F(x, y) - F(\xi, y)| + |F(\xi, y) - F(\xi, \eta)| \leq \frac{1}{2} |x - \xi| + |Df(a)^{-1}(y - \eta)|
\]

Therefore \(\frac{1}{2} |x - \xi| \leq \|Df(a)^{-1}\| |y - \eta| \) and hence \(|g(y) - g(\eta)| \leq 2\|Df(a)^{-1}\| |y - \eta| \).
(6) g is differentiable.

Since f is C^1 and, by (i) $Df(\xi)$ is invertible for $\xi \in \overline{B_k(a)}$, we can choose κ so that

$$\|Df(\xi)^{-1}\| \leq \kappa \text{ for } \xi \in \overline{B_k(a)}.$$

Let

$$\varphi(x) = f(x) - f(\xi) - Df(\xi)(x - \xi).$$

Then $|\varphi(x)|/|x - \xi| \to 0$ as $x \to \xi$, so for any $\varepsilon > 0$, $|\varphi(x)| \leq \varepsilon|x - \xi|$ for x near ξ. Let

$$\psi(y) = g(y) - g(\eta) - Df(\xi)^{-1}(y - \eta) = g(y) - g(\eta) - Df(\xi)^{-1}\{\varphi(x) + Df(\xi)(x - \xi)\} = g(y) - g(\eta) - (x - \xi) - Df(\xi)^{-1}(\varphi(x)) = -Df(\xi)^{-1}(\varphi(x)).$$

Then

$$|\psi(y)| \leq \kappa|\varphi(x)| \leq \kappa\varepsilon|x - \xi| \text{ for } x \text{ near } \xi,$$

$$\leq 2k^2\varepsilon|y - \eta| \text{ for } y \text{ near } \eta \text{ by (5)}.$$

Hence $|\psi(y)|/|y - \eta| \to 0$ as $y \to \eta$. Therefore g is differentiable at η and $Dg(\eta) = Df(g(\eta))^{-1}$.

(7) If f is C^k so is g.

We can write Dg as the composition $Dg = i \circ Df \circ g$ where $i(A) = A^{-1}$ is matrix inversion.

$$B_\delta(b) \xrightarrow{g} U \xrightarrow{Df} G\ell(n) \xrightarrow{i} G\ell(n),$$

where g is continuous, f is C^k so that Df is C^{k-1}, and i is C^∞ by Cramer’s rule. Since g is continuous, the composition, Dg is continuous, so g is C^1. Now if g is C^j for any $j < k$, then similarly, Dg is C^j, and g is C^{j+1}. By induction g is C^k, for $1 \leq k \leq \infty$.

This completes the proof of the inverse function theorem.

12. Applications of the inverse function theorem

Implicit Function Theorem. Let $(a, b) \in \mathbb{R}^k \times \mathbb{R}^n$. Let f be a C^1 function from a neighborhood of (a, b) to \mathbb{R}^n with $f(a, b) = c$. Let $D_2 f(a, b)$, the derivative of the function $y \mapsto f(a, y)$, be invertible.

Then there are neighborhoods $a \in U \subset \mathbb{R}^k$, $(a, b) \in V \subset \mathbb{R}^k \times \mathbb{R}^n$, and $c \in W \subset \mathbb{R}^n$ and a C^1 function $g : U \longrightarrow \mathbb{R}^n$ such that $f(V) \subset W$ and

$$(x, y) \in V \text{ and } f(x, y) = c \iff x \in U \text{ and } y = g(x),$$

$$Dg(x) = -D_2 f(x, g(x))^{-1} \circ D_1 f(x, g(x)).$$

10
Further there is a C^1 diffeomorphism $G : U \times W \to V$ such that, defining
\[g_w(x) = \pi_2 \circ G(x, w), \quad \text{we have} \quad f(x, y) = w \iff y = g_w(x). \]
The function $\varphi_w : U \to V$ define by $\varphi_w(x) = G(x, w)$ parameterizes the level surface
\[f^{-1}(w) = \{(x, y) \in V : f(x, y) = w \}. \]

Proof. Define F on the domain of f with values in $\mathbb{R}^k \times \mathbb{R}^n$ by $F(x, y) = (x, f(x, y))$. Then $F(a, b) = (a, c)$ and the Jacobian matrix of $DF(x, y)$ is
\[
\begin{pmatrix}
I & 0 \\
L & M
\end{pmatrix}
\]
where
\[L = D_1 f = \frac{\partial (f_1, \ldots, f_n)}{\partial (x_1, \ldots, x_k)} \quad \text{and} \quad M = D_2 f = \frac{\partial (f_1, \ldots, f_n)}{\partial (y_1, \ldots, y_n)}. \]
Since $M(a, b)$ is invertible, $DF(a, b)$ is invertible.

The inverse function theorem gives a map G which we may assume is defined on a product neighborhood $U \times W \subset \mathbb{R}^k \times \mathbb{R}^n$ of (a, c). Let $V = G(U \times W)$. Then $F|V$ and $G|U \times W$ are inverses. If $(x, y) \in V$ and $F(x, y) = (x, f(x, y)) = (x, w) \in U \times W$, then $G(x, w) = (x, y)$ and $f(x, y) = w$. Define $g_w(x) = \pi_2 \circ G(x, w) = y$. Then $f(x, g_w(x)) = f(x, y) = w$. For the case $f(x, y) = c$, take $g = g_c$.

Since F has a C^1 inverse on V, it follows that DF is invertible on V and, from the form of its Jacobian matrix, that the matrix $M(x, y)$ of $D_2 f(x, y)$ is also invertible. As a composition, $g_w(x)$ is differentiable. Differentiating $f(x, g_w(x)) = w$ with respect to x using the chain rule we get
\[
D_1 f(x, g_w(x)) + D_2 f(x, g_w(x)) \circ Dg_w(x) = 0, \quad \text{hence} \quad Dg_w(x) = -D_2 f(x, g_w(x))^{-1} \circ D_1 f(x, g_w(x)).
\]

Notice that V is not a product, the slice $\{y \in \mathbb{R}^n : (x, y) \in V\}$ depends on x.

Proposition 1. Let $p \in \mathbb{R}^m$ and let f be a C^1 map on a neighborhood of p to \mathbb{R}^n, $m \geq n$, with $DF(p)$ surjective. Then there is a neighborhood $p \in V \subset \mathbb{R}^m$ and a diffeomorphism $h : U \to V$, U open in \mathbb{R}^m, such that $f \circ h(x_1, \ldots, x_m) = (x_{m-n+1}, \ldots, x_m)$ or $f \circ h = \pi_2$.

Proof. Let $m = k + n$. Since $DF(p)$ is surjective we can reorder the variables, i.e. the coordinates of \mathbb{R}^m, x_1, \ldots, x_m, so that the Jacobian matrix of derivatives with respect to the last n variables is invertible. Then the implicit function theorem applies: the map $F(x) = (x_1, \ldots, x_k, f(x))$ restricted to a neighborhood V of a has an inverse $h : U \to V$. Then $F \circ h(z) = z$ and $f \circ h = \pi_2 \circ F \circ h = \pi_2$.

11
Proposition 2. Let \(a \in U \subset \mathbb{R}^m \) be open and \(f : U \rightarrow \mathbb{R}^n \) be a \(C^1 \) map, \(m \leq n \), with \(Df(a) \) injective. Then there are neighborhoods \(a \in U_1 \subset U, V \subset \mathbb{R}^n \) with \(f(U_1) \subset V \), and \(b \in W \subset \mathbb{R}^n \) and a diffeomorphism \(h : V \rightarrow W \) such that \(h \circ f(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0) \).

Proof. The Jacobian matrix of \(Df(a) \) has an invertible \(m \times m \) submatrix \(A \). We may permute the coordinate functions, \(f_1, \ldots, f_n \), i.e. the coordinates in the range \(\mathbb{R}^n \), so that the first \(m \) rows of the Jacobian of \(f \) are an invertible matrix \(A \).

Define \(F : U \times \mathbb{R}^{n-m} \rightarrow \mathbb{R}^n \) by

\[
F(x_1, \ldots, x_n) = f(x_1, \ldots, x_m) + (0, \ldots, 0, x_{m+1}, \ldots, x_n)
\]

Then \(F(a, 0) = f(a) + 0 = b \) and

\[
DF(a, 0) = \begin{pmatrix} A & 0 \\ B & I \end{pmatrix}
\]

which is invertible. By the inverse function theorem there are neighborhoods \((a, 0) \in V \subset U \times \mathbb{R}^{n-m} \) and \(b \in W \subset \mathbb{R}^n \) and a map \(h : W \rightarrow V \) inverse to \(F|V : V \rightarrow W \).

Set \(i(x_1, \ldots, x_m) = (x_1, \ldots, x_m, 0, \ldots, 0) \), so \(F \circ i = f \). Let \(U_1 = i^{-1}(V) \). On \(U_1 \)

\[
h \circ f = h \circ F \circ i = i.
\]

Think of \((h, W)\) as a new coordinate chart for \(\mathbb{R}^n \) with respect to which the map \(f \) has the simplest possible form: \(h \circ f = i \).

It follows that \(f|U_1 \) is a homeomorphism onto its image in the induced topology. That is \(\mathcal{O} \) is open in \(U_1 \) if and only if \(f(\mathcal{O}) \) is the intersection with \(f(U_1) \) of an open set in \(\mathbb{R}^n \).