Math 121 – Exam 3 Solutions

1. (20 pts) Compute the **EXACT** values of:

(a)
$$\cos \frac{3\pi}{4}$$
 (b) $\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$ (c) $\tan \frac{\pi}{6}$ (d) $\csc \frac{5\pi}{6}$ (e) $\cos^{-1}\left(\frac{\sqrt{2}}{2}\right)$

Solution:

(a)
$$\cos \frac{3\pi}{4} = \left\lfloor -\frac{\sqrt{2}}{2} \right\rfloor$$

(b) $\sin^{-1} \left(-\frac{\sqrt{3}}{2} \right) = \left\lfloor -\frac{\pi}{3} \right\rfloor$
(c) $\tan \frac{\pi}{6} = \left\lfloor \frac{\sqrt{3}}{3} \right\rfloor$
(d) $\csc \frac{5\pi}{6} = \left\lfloor 2 \right\rfloor$
(e) $\cos^{-1} \left(\frac{\sqrt{2}}{2} \right) = \left\lfloor \frac{\pi}{4} \right\rfloor$

2. (20 pts) If $\cos x = \frac{2}{3}$ and $\frac{3\pi}{2} \le x \le 2\pi$, then find the **EXACT** values of: (a) $\sin x$ (b) $\cos 2x$ (c) $\sin (x + \pi)$

Solution:

(a) The terminal side of x lies in Quadrant IV, where $\sin x < 0$ and $\cos x > 0$. Using the Pythagorean Identity, we have:

$$\sin^2 x + \cos^2 x = 1$$
$$\sin^2 x + \left(\frac{2}{3}\right)^2 = 1$$
$$\sin^2 x + \frac{4}{9} = 1$$
$$\sin^2 x = \frac{5}{9}$$
$$\boxed{\sin x = -\frac{\sqrt{5}}{3}}$$

(b) Using the double angle identity, we have:

$$\cos 2x = \cos^2 x - \sin^2 x$$
$$= \left(\frac{2}{3}\right)^2 - \left(-\frac{\sqrt{5}}{3}\right)^2$$
$$= \frac{4}{9} - \frac{5}{9}$$
$$= \left[-\frac{1}{9}\right]$$

(c) Using the addition identity, we have:

$$\sin(x+\pi) = \sin x \cos \pi + \cos x \sin \pi$$
$$= \left(-\frac{\sqrt{5}}{3}\right)(-1) + \left(\frac{2}{3}\right)(1)$$
$$= \boxed{\frac{\sqrt{5}}{3}}$$

3. (15 pts) A function f(t) is known to have the following properties:

amplitude =
$$\pi$$
, period = 2, phase shift = -1

Find the values of A, b, and c such that $f(t) = A\cos(bt + c)$.

Solution: Since amplitude = $|A| = \pi$, we have A = 2 (or we could have A = -2). Using the definition of the period, we have:

period =
$$\frac{2\pi}{b} = 2$$

 $b = \frac{2\pi}{2}$
 $b = \pi$

Using the definition of the phase shift, we have:

phase shift
$$= -\frac{c}{b} = -1$$

 $-\frac{c}{\pi} = -1$
 $\boxed{c = \pi}$

4. (15 pts) Prove the following identity:

$$\sec x - \cos x = \sin x \tan x$$

Solution: To prove the identity, we will start with the left side and convert it:

$$\sec x - \cos x = \frac{1}{\cos x} - \cos x$$
$$= \frac{1 - \cos^2 x}{\cos x}$$
$$= \frac{\sin^2 x}{\cos x}$$
$$= \sin x \cdot \frac{\sin x}{\cos x}$$
$$= \sin x \tan x$$

5. (15 pts) Find the **EXACT** values of the following expressions:

(a)
$$\cot\left(\sin^{-1}\frac{2}{5}\right)$$
 (b) $\cos^{-1}\left(\tan\frac{3\pi}{4}\right)$

Solution:

(a) Let $x = \sin^{-1} \frac{2}{5}$. Then $\sin x = \frac{2}{5}$ and the terminal side of x is in Quadrant I. Using the Pythagorean Identity, we have:

$$\sin^2 x + \cos^2 x = 1$$
$$\left(\frac{2}{5}\right)^2 + \cos^2 x = 1$$
$$\frac{4}{25} + \cos^2 x = 1$$
$$\cos^2 x = \frac{21}{25}$$
$$\cos x = \frac{\sqrt{21}}{5}$$

Thus,

$$\cot\left(\sin^{-1}\frac{2}{5}\right) = \cot x$$
$$= \frac{\cos x}{\sin x}$$
$$= \boxed{\frac{\sqrt{21}}{2}}$$

(b)
$$\cos^{-1}\left(\tan\frac{3\pi}{4}\right) = \cos^{-1}(-1) = \boxed{\pi}$$

6. (15 pts) Find all solutions to the equation:

$$\sin 3x = \frac{1}{2}$$

in the interval $0 \le x \le 5$.

Solution: Let $\theta = 2x$. One solution to $\sin \theta = \frac{1}{2}$ is $\theta = \frac{\pi}{6}$. All solutions are: $\theta = \frac{\pi}{6} + 2k\pi$, where $k = 0, \pm 1, \pm 2, \dots$ $\theta = \left(\pi - \frac{\pi}{6}\right) + 2k\pi$ $= \frac{5\pi}{6} + 2k\pi$

Substituting 3x for θ , we have:

$$3x = \frac{\pi}{6} + 2k\pi$$

$$3x = \frac{5\pi}{6} + 2k\pi$$

$$\Rightarrow \quad x = \frac{\pi}{18} + \frac{2k\pi}{3}, \quad \text{where } k = 0, \pm 1, \pm 2, \dots$$

$$x = \frac{5\pi}{18} + \frac{2k\pi}{3}$$

The solutions that lie in the interval $0 \le x \le 5$ are:

x =	π	5π	13π	17π	25π
	$\overline{18}$	$\overline{18}$,	18''	18''	18