Math 121 - Section 5.8 Solutions

1. The size P of a certain insect population at time t (in days) obeys the function $P(t)=500 e^{0.02 t}$.
(a) $P(0)=500$
(b) The growth rate is 0.02 .
(c) $P(10)=500 e^{0.02(10)}=500 e^{0.2} \approx 610$
(d) The time t when $P(t)=800$ is:

$$
\begin{aligned}
800 & =e^{0.02 t} \\
0.02 t & =\ln 800 \\
t & =\frac{\ln 800}{0.02} \approx 334.23 \text { days }
\end{aligned}
$$

(e) The time t when $P(t)=1000$ is:

$$
t=\frac{\ln 1000}{0.02} \approx 345.39 \text { days }
$$

4. Iodine 131 is a radioactive material that decays according to the function $A(t)=A_{0} e^{-0.087 t}$, where A_{0} is the initial amount present and A is the amount present at time t (in days). Assume that a scientist has a sample of 100 grams of iodine 131.
(a) The decay rate is -0.087 .
(b) $A(9)=100 e^{-0.087(9)} \approx 45.70$ grams
(c) The time t when $A(t)=70$ is:

$$
\begin{aligned}
70 & =100 e^{-0.087 t} \\
-0.087 t & =\ln \frac{70}{100} \\
t & =\frac{\ln \frac{70}{100}}{-0.087} \approx 4.1 \text { days }
\end{aligned}
$$

(d) The time t when $A(t)=50$ is:

$$
t=\frac{\ln \frac{50}{100}}{-0.087} \approx 7.97 \text { days }
$$

8. The population of a midwestern city follows the exponential law.
(a) If N is the population of the city and t is the time in years, then:

$$
N(t)=N_{0} e^{k t}
$$

(b) If the population decreased from 900,000 to 800,000 from 2003 to 2005 then:

$$
N(0)=900,000, N(2)=800,000
$$

Therefore, solving for k we have:

$$
\begin{aligned}
N(2) & =N_{0} e^{2 k} \\
800,000 & =900,000 e^{2 k} \\
\frac{8}{9} & =e^{2 k} \\
2 k & =\ln \frac{8}{9} \\
k & =\frac{\ln \frac{8}{9}}{2} \approx-0.059
\end{aligned}
$$

Using the value of k above, the population in 2007 is:

$$
N(4)=900,000 e^{4 k} \approx 711,111
$$

14. A thermometer reading $72^{\circ} \mathrm{F}$ is placed in a refrigerator where the temperature is a constant $38^{\circ} \mathrm{F}$.
(a) Using Newton's Law of Cooling:

$$
u(t)=T+\left(u_{0}-T\right) e^{-k t}
$$

we know that $T=38$ and $u_{0}=72$. If the thermometer reads $60^{\circ} \mathrm{F}$ after 2 minutes, the value of k is:

$$
\begin{aligned}
60 & =38+(72-38) e^{-2 k} \\
e^{-2 k} & =\frac{60-38}{72-38} \\
e^{-2 k} & =\frac{22}{34} \\
-2 k & =\ln \frac{22}{34} \\
k & =-\frac{\ln \frac{22}{34}}{2} \approx 0.22
\end{aligned}
$$

After 7 minutes, the thermometer reads:

$$
u(7)=38+(72-38) e^{-7 k} \approx 45.41^{\circ} \mathrm{F}
$$

(b) The time t when the thermometer reads $39^{\circ} \mathrm{F}$ is:

$$
\begin{aligned}
39 & =38+(72-38) e^{-k t} \\
1 & =34 e^{-k t} \\
e^{-k t} & =\frac{1}{34} \\
-k t & =\ln \frac{1}{34} \\
t & =-\frac{\ln \frac{1}{34}}{k} \approx 16.2 \text { minutes }
\end{aligned}
$$

(c) The time t when the thermometer reads $45^{\circ} \mathrm{F}$ is:

$$
\begin{aligned}
45 & =38+(72-38) e^{-k t} \\
7 & =34 e^{-k t} \\
t & =-\frac{\ln \frac{7}{34}}{k} \approx 7.18 \text { minutes }
\end{aligned}
$$

(d) As time passes, the temperature decreases and approaches $T=38^{\circ} \mathrm{F}$.
23. The logistic growth model

$$
P(t)=\frac{0.9}{1+6 e^{-0.32 t}}
$$

relates the proportion of U.S. households that own a DVD player to the year. Let $t=0$ represent 2000, $t=1$ represent 2001, and so on.
(a) The maximum proportion of households that will own a DVD player is 0.9 .
(b) $P(0)=\frac{0.9}{1+6} \approx 0.13$
(c) $P(5)=\frac{0.9}{1+6 e^{-0.32(5)}} \approx 0.41$
(d) The time t when 80% of households own a DVD player is:

$$
\begin{array}{rl}
0.8 & =\frac{0.9}{1+6 e^{-0.32 t}} \\
1+6 e^{-0.32 t} & =\frac{0.9}{0.8} \\
e^{-0.32 t} & =\frac{\frac{0.9}{0.8}-1}{6} \\
t & \left.=-\frac{\ln \left(\frac{0.9}{0.8}-1\right.}{6}\right) \\
0.32 & 12.1 \text { years }
\end{array}
$$

