Math 121 - Section 6.6 Solutions

3. $y=4 \sin (2 x-\pi)$

$$
\text { amplitude }=4, \quad \text { period }=\frac{2 \pi}{2}=\pi, \quad \text { phase shift }=\frac{\pi}{2}
$$

7. $y=3 \sin (3 x-\pi)$

$$
\text { amplitude }=3, \quad \text { period }=\frac{2 \pi}{3}, \quad \text { phase shift }=\frac{\pi}{3}
$$

11. $y=3 \cos (\pi x-2)+5$

$$
\text { amplitude }=3, \quad \text { period }=\frac{2 \pi}{\pi}=2, \quad \text { phase shift }=\frac{2}{\pi}
$$

14. $y=-3 \cos \left(2 x+\frac{\pi}{2}\right)$

$$
\text { amplitude }=3, \quad \text { period }=\frac{2 \pi}{2}=\pi, \quad \text { phase shift }=-\frac{\frac{\pi}{2}}{2}=-\frac{\pi}{4}
$$

15. Since the amplitude is 2 , let $A=2$.

Since the period is π, we have:

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{\omega} \\
\pi & =\frac{2 \pi}{\omega} \\
\omega & =2
\end{aligned}
$$

Since the phase shift is $\frac{1}{2}$, we have:

$$
\begin{aligned}
\text { phase shift } & =\frac{\phi}{\omega} \\
\frac{1}{2} & =\frac{\phi}{2} \\
\phi & =1
\end{aligned}
$$

Therefore, $y=2 \sin (2 x-1)$
17. Since the amplitude is 3 , let $A=3$.

Since the period is $\frac{\pi}{2}$, we have:

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{\omega} \\
\frac{\pi}{2} & =\frac{2 \pi}{\omega} \\
\omega & =4
\end{aligned}
$$

Since the phase shift is 2 , we have:

$$
\begin{aligned}
\text { phase shift } & =\frac{\phi}{\omega} \\
2 & =\frac{\phi}{4} \\
\phi & =8
\end{aligned}
$$

Therefore, $y=3 \sin (4 x-8)$
18. Since the amplitude is 2 , let $A=2$.

Since the period is π, we have:

$$
\begin{aligned}
\text { period } & =\frac{2 \pi}{\omega} \\
\pi & =\frac{2 \pi}{\omega} \\
\omega & =2
\end{aligned}
$$

Since the phase shift is -2 , we have:

$$
\begin{aligned}
\text { phase shift } & =\frac{\phi}{\omega} \\
-2 & =\frac{\phi}{2} \\
\phi & =-4
\end{aligned}
$$

Therefore, $y=2 \sin (2 x+4)$

