- Show all of your work. An unjustified answer is not correct!
- Put all work and solutions in the paper provided, with a BOX around your final answers.
- Please indicate if you use a TI-89/92. calculator. You are required to show intermediate steps.
- Write on the first page of the exam booklet or solutions your

1. NAME
2. SOCIAL SECURITY NUMBER
3. LECTURER NAME (HURDER or WOOD)
4. DISCUSSION SECTION HOUR/DAY

Keep your eyes on your own work and keep your work covered. A table of Laplace transforms and useful formulae is provided for your use.

There are 10 problems - 5 on this side, and 5 on the other side.

Problem 1: (20 pts) Find the general solution of the ODE

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

Problem 2: (20 pts) Find the general solution of the ODE

$$
y^{\prime \prime}+4 y=\cos 3 t
$$

Problem 3: (20 pts) Find the solution of the ODE

$$
\frac{d y}{d x}=\sqrt{y}, y(0)=1
$$

Problem 4: (20 pts) Find the solution of the ODE

$$
\frac{d y}{d x}+\frac{1}{x} y=1, y(1)=1
$$

Problem 5: (20 pts) Find the power series through the x^{5} term for the solution $y(x)$ of the equation

$$
y^{\prime}+x y+x=0, \quad y(0)=1
$$

Problem 6: Given the initial value problem (where $u(t)$ is the Heaviside step function):

$$
y^{\prime}+2 y=u(t-3), \quad y(0)=1
$$

a) (10 pts) Find the Laplace transform $Y(s)$ of the solution $y(t)$
b) (10 pts) Use the tables of Laplace transforms to find the solution $y(t)$ using your answer to a)

Problem 7: Let $f(x)=1$ for $0<x<\pi$.
a) (5 pts) Sketch the graph of the ODD function which extends f to $-\pi<x<\pi$
c) (15 pts) Find the Fourier sine series for f on $0<x<\pi$

Problem 8: (20 pts) Find the solution of the heat equation

$$
\begin{gathered}
\frac{\partial u(x, t)}{\partial t}=2 \frac{\partial^{2} u(x, t)}{\partial x^{2}}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=0, u(\pi, t)=0, t>0 \\
u(x, 0)=\sin x+\frac{1}{3} \sin (3 x), 0<x<\pi
\end{gathered}
$$

Problem 9: (20 pts) Find the solutions $x(t)$ and $y(t)$ of the system

$$
\begin{aligned}
x^{\prime} & =4 x-3 y \\
y^{\prime} & =x
\end{aligned}
$$

with initial conditions $x(0)=-2$ and $y(0)=5$.

Problem 10: (20 pts) Given the ODE:

$$
\frac{d y}{d t}=-t y+y^{2}, y(0)=1
$$

Use Euler's numerical algorithm with step size $h=1 / 10$ to compute $y(0.1)$ and $y(0.2)$.

