Math 220: SAMPLE FINAL EXAM II - revised 11.26.06

1. Consider the following equation for $y(x)$:

$$
y^{\prime \prime}+2 y^{\prime}=6 x
$$

(a) Find a fundamental set of solutions to the corresponding homogeneous equation.
(b) Construct a particular solution.
(c) Give the general solution.
2. Construct the (implicit) solution $y(x)$ of the initial value problem:

$$
e^{y} \frac{d y}{d x}=(\sin x)\left(e^{y}+3\right)^{1 / 2}, \quad y(0)=0
$$

3. (a) Find the general solution of: $x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad x>0$
(b) Solve:

$$
\begin{aligned}
x^{\prime} & =3 y \\
y^{\prime} & =2 x-y .
\end{aligned}
$$

4. Consider the boundary value problem:

$$
y^{\prime \prime}+4 y=0, \quad 0<x<L ; \quad y^{\prime}(0)=0 ; \quad y(L)=0
$$

Find the smallest value of $L>0$ such that the BVP has a nonzero solution.
5. (a) Find the Laplace transform $Y(s)=\mathcal{L}\{y(t)\}$:

$$
y^{\prime \prime}+4 y^{\prime}+8 y=\sin 2 t+(t-1)^{4}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

(b) Let $G(s)=\mathcal{L}\{g(t)\}$. Express as a function of t (without explicitly computing constants), the inverse Laplace transform

$$
\mathcal{L}^{-1}\left\{\frac{8}{s^{3}\left(s^{2}-s-2\right)}+\frac{G(s)}{s^{2}+1}\right\}=
$$

6. Consider

$$
f(x)= \begin{cases}0, & 0<x<\pi / 2 \\ 1, & \pi / 2<x<\pi\end{cases}
$$

(a) Construct a Fourier cosine series for $f(x)$.
(b) Sketch a graph showing the values the series in (a) converges to on $-2 \pi<x<2 \pi$.

7. A 20 L transfer tank is initially filled with fresh water. Fluid leaves the tank from the bottom at the rate of $10 \mathrm{~L} / \mathrm{min}$ and water enters the tank from the top at the same rate. An accident occurs at $t=0$ and salt contaminates the incoming water causing the water entering from the top to have a salt concentration of $1 \mathrm{~kg} / \mathrm{L}$. At time $t=5$, the error is discovered and the source of salt is stopped so that the entering water is again fresh. Find $x(t)$ which is the amount of salt in the tank at time t.
8. Find the solution $u(x, t)$ of the heat conduction problem

$$
\begin{gathered}
u_{t}=u_{x x}, \quad 0<x<\pi, \quad t>0 \\
u_{x}(0, t)=0 \quad u_{x}(\pi, t)=0, \quad t>0 \\
u(x, 0)=4-2 \cos 3 x+7 \cos 4 x, \quad 0<x<\pi
\end{gathered}
$$

