C. Tier

Answer all questions (25pts/question) - show all work in your exam booklet.

1. (a) Find $\mathcal{L}\left\{e^{t} t^{3}\right\}$
(b) Use the convolution theorem to find $\mathcal{L}^{-1}\left\{\frac{1}{s\left(s^{2}+1\right)}\right\}$
(c) Find $\mathcal{L}^{-1}\left\{\frac{1}{s^{2}+4 s+3}\right\}$
2. Consider the undamped oscillator with displacement $x(t)$ governed by:

$$
x^{\prime \prime}+4 x=2 \cos \gamma t
$$

(a) Find an explicit formula for a particular solution when $\gamma \neq 2$.
(b) Choose and re-sketch in your exam booklet the graph which best represents the behavior when $\gamma=2$. What is the significance of $\gamma=2$?

3. Find $y(t)$:

$$
y^{\prime}+4 y=3 e^{-4 t}-2 u(t-2), \quad y(0)=5
$$

4. Find $x(t)$:

$$
\begin{aligned}
x^{\prime} & =-2 x+y+\delta(t), \quad x(0)=0 \\
y^{\prime} & =3 x-4 y, \quad y(0)=1
\end{aligned}
$$

Table of Laplace Transforms

$f(t)$	$F(s)=\mathcal{L}\{f(t)\}$
$f(a t)$	$\frac{1}{a} F\left(\frac{1}{a}\right)$
$e^{a t} f(t)$	$F(s-a)$
$f^{\prime}(t)$	$s F(s)-f(0)$
$f^{(n)}(t)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$
$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$
$\frac{1}{t} f(t)$	$\int_{s}^{\infty} F(u) d u$
$\int_{0}^{t} f(v) d v$	$F(s) / s$
$f * g$	$F(s) G(s)$
$f(t-a) u(t-a), a \geq 0$	$e^{-a s} F(s)$
$g(t) u(t-a), a \geq 0$	$e^{-a s} \mathcal{L}\{g(t+a)\}$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}$
$\sinh b t$	$\frac{b}{s^{2}-b^{2}}$
$\cosh b t$	$\frac{s}{s^{2}-b^{2}}$

