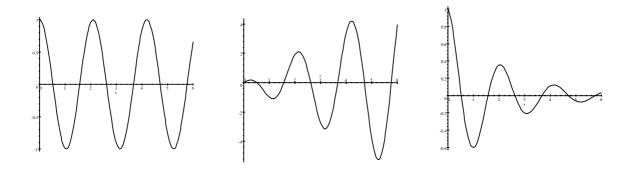
MATH 220 EXAM II

C. Tier

Answer all questions (25pts/question) - show all work in your exam booklet.

1. (a) Find $\mathcal{L}\{e^t t^3\}$


(b) Use the convolution theorem to find $\mathcal{L}^{-1}\left\{\frac{1}{s(s^2+1)}\right\}$

(c) Find
$$\mathcal{L}^{-1}\left\{\frac{1}{s^2+4s+3}\right\}$$

2. Consider the undamped oscillator with displacement x(t) governed by:

$$x'' + 4\ x = 2\cos\gamma t$$

- (a) Find an explicit formula for a particular solution when $\gamma \neq 2$.
- (b) Choose and re-sketch in your exam booklet the graph which best represents the behavior when $\gamma = 2$. What is the significance of $\gamma = 2$?

3. Find y(t):

$$y' + 4y = 3e^{-4t} - 2u(t-2), \quad y(0) = 5$$

4. Find x(t):

$$\begin{aligned} x' &= -2x + y + \delta(t), \ x(0) &= 0, \\ y' &= 3x - 4y, \ y(0) &= 1 \end{aligned}$$

Table of Laplace Transforms

f(t)	$F(s) = \mathcal{L}\{f(t)\}$
f(at)	$\frac{1}{a}F\left(\frac{1}{a}\right)$
$e^{at}f(t)$	F(s-a)
f'(t)	sF(s) - f(0)
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
$t^n f(t)$	$(-1)^n F^{(n)}(s)$
$\frac{1}{t}f(t)$	$(-1)^n F^{(n)}(s)$ $\int_s^\infty F(u) du$
$\int_0^t f(v) dv$	F(s)/s
f * g	F(s)G(s)
$f(t-a)u(t-a), a \ge 0$	$e^{-as}F(s)$
$g(t)u(t-a), \ a \ge 0$	$e^{-as}\mathcal{L}\{g(t+a)\}$
$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$
$e^{at}\cos bt$	$\frac{(s-a)^2+b^2}{(s-a)^2+b^2}$
$\sinh bt$	$\frac{b}{s^2 - b^2}$
$\cosh bt$	$\frac{S}{-2}$ 12