Directions: Answer all questions and show all (intermediate) work in the booklet provided. Start each new question at the top of a new page and box your final answer.

1. (20 pts) Consider the initial value problem:

$$
y^{\prime}=2 x y\left(1+x^{2}\right)^{-1 / 2}, \quad y(0)=1
$$

(a) Is the differential equation separable?
(b) Is the differential equation linear?
(c) State the method you will use to solve for $y(x)$ and then find the solution (you may leave your answer in implicit form).
2. (20 pts) Consider the initial value problem: $y^{\prime}=\frac{3}{x}+y$ with $y(1)=-1$.
(a) Use Euler's method with step size $h=0.5$ to approximate the solution $y(x)$ at the point $x=2$.
(b) Use the improved Euler's method with step size $h=0.5$ to approximate the solution $y(x)$ at the point $x=1.5$.
3. (20 pts) Complete each of the following:
(a) Find the general solution to: $y^{\prime \prime}+4 y^{\prime}+8 y=0$ (your answer should not contain the imaginary number i).
(b) Write the form of the particular solution to: $y^{\prime \prime}+4 y^{\prime}+8 y=1+e^{-2 x} \cos 2 x$ (do not solve for the coefficients).
4. (10 pts) A nitric acid solution flows at a constant rate of $4 \mathrm{~L} / \mathrm{min}$ into a large tank that initially held 100 L of pure water. The solution inside the tank is kept well-stirred and flows out of the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. If the concentration of nitric acid in the solution entering the tank is 0.1 , set up but do not solve the initial value problem for $x(t)$, the volume of nitric acid in the tank at time t.
5. (30 pts) Consider the following second order, linear, constant coefficient, non-homogeneous differential equation:

$$
y^{\prime \prime}+6 y^{\prime}+5 y=3 e^{-2 x}
$$

(a) Use the method of undetermined coefficients to find the particular solution $y_{p}(x)$ (you must solve for the coefficient(s)).
(b) Find the general solution.
(c) Now use variation of parameters to find the particular solution $y_{p}(x)$. Note: If you have done this correctly, you will get the same answer as in part (a).

The following equations may be helpful:

$$
\begin{aligned}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime} & =\frac{g(x)}{a}
\end{aligned}
$$

