Directions: Answer all questions and show all (intermediate) work in the booklet provided. Start each new question at the top of a new page and box your final answer.

1. (a) (15 pts) Solve the initial value problem:

$$
\left(x^{2}+1\right) \frac{d y}{d x}=x-x y, \quad y(0)=-1
$$

(b) (10 pts) Consider the initial value problem:

$$
\frac{d x}{d t}=x^{2}+2 t, x(1)=2
$$

Use Euler's method with step size $h=\frac{1}{2}$ to estimate $x(2)$.
2. (20 pts) A tank has a capacity of 20 L . It initially contains 10 L of pure water. A solution of salt and water is fed into the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$ with a concentration of $1 \mathrm{~kg} / \mathrm{L}$. The solution is drained from the tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
(a) At what time T will the tank be filled?
(b) Determine $x(t)$, the amount of salt in the tank at time t.
3. (20 pts) Find the general solutions to the ordinary differential equations:
(a) $x^{2} y^{\prime \prime}-x y^{\prime}+y=0$
(b) $y^{\prime \prime}-3 y^{\prime}+16 y=0$
4. (25 pts) Consider the equation $y^{\prime \prime}+4 y^{\prime}+4 y=e^{-2 t}-3$.
(a) Find the homogeneous solution.
(b) Find a particular solution (you must solve for the unknown constants).
(c) Write down the general solution.
5. (15 pts) Find the solutions $x(t)$ and $y(t)$ to the following system of ODEs:

$$
\begin{aligned}
y^{\prime}-2 y & =x, & & x(0)=1 \\
x^{\prime}+y^{\prime} & =0, & & y(0)=1
\end{aligned}
$$

6. (30 pts) Evaluate the following expressions:
(a) $\mathscr{L}\left[(t+1)^{3} e^{t}+e^{-2 t} \sin 3 t\right]$
(b) $\mathscr{L}^{-1}\left[\frac{s+6}{s^{2}+4 s+20}+\frac{G(s)}{s^{2}}\right]$ where $G(s)=\mathscr{L}[g(t)]$
7. (25 pts) Consider the following initial value problem:

$$
x^{\prime \prime}-4 x=3 \delta(t-2), x(0)=0, x^{\prime}(0)=1
$$

(a) Find the Laplace transform of the solution $X(s)$.
(b) Use the inverse Laplace transform to find the solution $x(t)$.
8. (20 pts) Consider the function $f(x)=\left\{\begin{array}{ll}1, & \text { if }-2 \pi<x<-\pi \\ 0, & \text { if }-\pi<x<\pi \\ 1, & \text { if } \pi<x<2 \pi\end{array}\right.$.
(a) Compute the Fourier expansion of $f(x)$ on $[-2 \pi, 2 \pi]$.
(b) Define the function to which the Fourier series from part (a) converges.
9. (20 pts) Find the solution $u(x, t)$ to:

$$
\begin{aligned}
u_{t} & =u_{x x} \\
\text { I.C. }: u(x, 0) & =\pi+\cos 2 x-3 \cos 5 x \\
\text { B.C.s : } \frac{\partial u}{\partial x}(0, t) & =0=\frac{\partial u}{\partial x}(\pi, t)
\end{aligned}
$$

