Directions: Answer all questions and show all work in the exam booklet provided. Start each new question at the top of a new page and box your final answer. Questions $2-4,6$ are worth 15 points, Questions 1 and 5 are 20 points.

1. (a) Find the general solution of: $4 y^{\prime \prime}-4 y^{\prime}+y=0$
(b) Find the general solution of: $y^{\prime \prime}+2 y^{\prime}+2 y=0$
(c) The functions x^{2} and $1 / x$ are solutions to a 2 nd order, linear homogeneous ODE on $x>0$. Verify whether or not the two solutions form a fundamental solution set.
2. Solve the IVP:

$$
y \frac{d y}{d x}=\frac{3 x^{2}+4 x+2}{2 y+1}, \quad y(0)=-1
$$

3. Solve the IVP:

$$
\frac{d y}{d t}+4 y=e^{-t}, \quad y(0)=4 / 3
$$

4. (a) Solve: $\frac{d y}{d x}=x(1-y), \quad y(0)=2$
(b) Sketch the direction field corresponding to the ODE in part (a) for $x \geq 0$ and $0 \leq y \leq 2$.
5. A large tank is initially empty. At time $t=0$, a brine solution begins to enter the tank at the rate of $6 \mathrm{~L} / \mathrm{min}$ with concentration $2 \mathrm{Kg} / \mathrm{L}$. The well-stirred solution is removed from the tank at the rate of $5 \mathrm{~L} / \mathrm{min}$. State and solve for $A(t)=$ the amount of salt in the tank at time t.
6. Consider $y^{\prime}=-x y+y^{2}, y(0)=1$
(a) Approximate $y(1 / 10)$ using Euler's method with step size $h=1 / 10$.
(b) Approximate $y(1 / 10)$ using Improved Euler's method with step size $h=$ $1 / 10$. Use part (a) as your prediction step.
