Math 220 Quiz 2 Solution

1. A tank initially contains 50 L of pure water. A solution of salt and water flows into the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$ and has a concentration of $1 \mathrm{~kg} / \mathrm{L}$. The solution flows out of the tank at a rate of $2 \mathrm{~L} / \mathrm{min}$. Determine $x(t)$, the amount of salt in the tank at time t.
2. Write the general solution $y(x)$ to the following ODE:

$$
y^{\prime \prime}+y^{\prime}-2 y=0
$$

3. Write the form of the particular solution to the ODE:

$$
y^{\prime \prime}+y^{\prime}-2 y=3 e^{2 x}+4 \sin x
$$

Note: DO NOT SOLVE FOR THE COEFFICIENTS!

Solution:

1. The flow rates in and out are the same so the volume will remain constant at $V=50 \mathrm{~L}$. The governing ODE is:

$$
\begin{aligned}
\frac{d x}{d t} & =\text { rate in }- \text { rate out } \\
\frac{d x}{d t} & =r_{i} c_{i}-r_{o} c_{o} \\
\frac{d x}{d t} & =(2)(1)-(2)\left(\frac{x}{V}\right) \\
\frac{d x}{d t} & =2-\frac{2}{50} x \\
\frac{d x}{d t} & =\frac{50-x}{25}
\end{aligned}
$$

The above equation is both separable and linear. We'll solve by separation of variables:

$$
\begin{aligned}
\int \frac{d x}{50-x} & =\int 25 d t \\
-\ln |50-x| & =25 t+C
\end{aligned}
$$

Initially, there is pure water so $x(0)=0$. Plugging in $t=0$ and $x=0$ and solving for C we get:

$$
-\ln |50-0|=25(0)+C \Rightarrow C=-\ln 50
$$

The solution is:

$$
\begin{aligned}
-\ln |50-x| & =25 t-\ln 50 \\
\ln |50-x|-\ln 50 & =-25 t \\
\ln \left|\frac{50-x}{50}\right| & =-25 t \\
\frac{50-x}{50} & =e^{-25 t} \\
x(t) & =50-50 e^{-25 t}
\end{aligned}
$$

2. The auxiliary equation is $r^{2}+r-2=(r+2)(r-1)=0$. The roots are $r=-2,1$. Thus, the general solution is:

$$
y(x)=c_{1} e^{-2 x}+c_{2} e^{x}
$$

3. The form of the particular solution is:

$$
y_{p}(x)=A e^{2 x}+B \sin x+C \cos x
$$

