Math 220 Quiz 2 Solution

1. A tank initially contains 20 L of pure water. A solution of salt and water flows into the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$ and has a concentration of $1 \mathrm{~kg} / \mathrm{L}$. The solution flows out of the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. Determine $x(t)$, the amount of salt in the tank at time t.
2. Write the general solution $y(x)$ to the following ODE:

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0
$$

3. Write the form of the particular solution to the ODE:

$$
y^{\prime \prime}+6 y^{\prime}+8 y=x^{2}-e^{2 x}
$$

Note: DO NOT SOLVE FOR THE COEFFICIENTS!

Solution:

1. The flow rates in and out are the same so the volume will remain constant at $V=20 \mathrm{~L}$. The governing ODE is:

$$
\begin{aligned}
& \frac{d x}{d t}=\text { rate in }- \text { rate out } \\
& \frac{d x}{d t}=r_{i} c_{i}-r_{o} c_{o} \\
& \frac{d x}{d t}=(3)(1)-(3)\left(\frac{x}{V}\right) \\
& \frac{d x}{d t}=3-\frac{3}{20} x \\
& \frac{d x}{d t}=\frac{60-x}{20}
\end{aligned}
$$

The above equation is both separable and linear. We'll solve by separation of variables:

$$
\begin{aligned}
\int \frac{d x}{60-x} & =\int 20 d t \\
-\ln |60-x| & =20 t+C
\end{aligned}
$$

Initially, there is pure water so $x(0)=0$. Plugging in $t=0$ and $x=0$ and solving for C we get:

$$
-\ln |60-0|=20(0)+C \Rightarrow C=-\ln 60
$$

The solution is:

$$
\begin{aligned}
-\ln |60-x| & =20 t-\ln 60 \\
\ln |60-x|-\ln 60 & =-20 t \\
\ln \left|\frac{60-x}{60}\right| & =-20 t \\
\frac{60-x}{60} & =e^{-20 t} \\
x(t) & =60-60 e^{-20 t}
\end{aligned}
$$

2. The auxiliary equation is $r^{2}+6 r+8=(r+4)(r+2)=0$. The roots are $r=-4,-2$. Thus, the general solution is:

$$
y(x)=c_{1} e^{-4 x}+c_{2} e^{-2 x}
$$

3. The form of the particular solution is:

$$
y_{p}(x)=A_{2} x^{2}+A_{1} x+A_{0}+B e^{2 x}
$$

