Math 220 Quiz 3 Solution

1. Find the general solution to the following system of first order ODEs:

$$
\begin{aligned}
x^{\prime}+y^{\prime} & =2 \\
x^{\prime}-y & =x
\end{aligned}
$$

2. Use eigenvalues/eigenvectors to find the general solution to the following system of first order ODEs:

$$
\begin{aligned}
& \frac{d \overrightarrow{\mathbf{x}}}{d t}=\left[\begin{array}{rr}
1 & 1 \\
0 & -1
\end{array}\right] \overrightarrow{\mathbf{x}} \\
& \text { where } \overrightarrow{\mathbf{x}}=\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]
\end{aligned}
$$

Solution:

1. Let's take the second equation and solve for y :

$$
y=x^{\prime}-x
$$

Then plug this into the first equation:

$$
\begin{aligned}
x^{\prime}+\left(x^{\prime}-x\right)^{\prime} & =2 \\
x^{\prime}+x^{\prime \prime}-x^{\prime} & =2 \\
x^{\prime \prime} & =2 \\
\Rightarrow \quad x^{\prime} & =2 t+c_{1} \\
x(t) & =t^{2}+c_{1} t+c_{2}
\end{aligned}
$$

Then we have:

$$
\begin{aligned}
y(t) & =x^{\prime}-x \\
& =\left(t^{2}+c_{1} t+c_{2}\right)^{\prime}-\left(t^{2}+c_{1} t+c_{2}\right) \\
& =2 t+c_{1}-t^{2}-c_{1} t-c_{2} \\
y(t) & =-t^{2}+\left(2-c_{1}\right) t+c_{1}-c_{2}
\end{aligned}
$$

2. We first find the eigenvalues of the coefficient matrix A :

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =0 \\
\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & -1-\lambda
\end{array}\right| & =0 \\
(1-\lambda)(-1-\lambda)-(0)(2) & =0 \\
(1-\lambda)(-1-\lambda) & =0 \\
\Rightarrow \lambda=1, \lambda & =-1
\end{aligned}
$$

Now find an eigenvector for each eigenvalue. Let's start with $\lambda=1$. To find an associated eigenvector we solve:

$$
\begin{aligned}
(A-1 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{cc}
1-1 & 1 \\
0 & -1-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{rr}
0 & 1 \\
0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow x_{2} & =0
\end{aligned}
$$

Since x_{1} can be anything, we'll just say $x_{1}=1$. Therefore, an eigenvector for $\lambda=1$ is:

$$
\lambda=1: \quad \overrightarrow{\mathrm{x}}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Now let's find an eigenvector for $\lambda=-1$:

$$
\begin{aligned}
(A+1 I) \overrightarrow{\mathbf{x}} & =\overrightarrow{\mathbf{0}} \\
{\left[\begin{array}{cc}
1+1 & 1 \\
0 & -1+1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
{\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] } & =\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
\Rightarrow 2 x_{1}+x_{2} & =0
\end{aligned}
$$

Set $x_{2}=2$, then $x_{1}=-1$. Therefore, an eigenvector for $\lambda=-1$ is:

$$
\lambda=-1: \quad \vec{x}=\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

The general solution is then:

$$
\overrightarrow{\mathbf{x}}=c_{1} e^{t}\left[\begin{array}{l}
1 \\
0
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
2
\end{array}\right]
$$

