Math 220 Quiz 5 Solution

1. Find the solution to the following initial value problem:

$$
y^{\prime \prime}-y=2 \delta(t-3), y(0)=0, y^{\prime}(0)=0
$$

2. Determine the Taylor Polynomial of degree 2 that approximates the solution to:

$$
y^{\prime}=x^{2}+e^{y}, y(0)=0
$$

Solution:

1. Start by taking the Laplace transform of the equation and solve for $Y(s)$:

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime \prime}\right\}-\mathscr{L}\{y\} & =2 \mathscr{L}\{\delta(t-3)\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)-Y(s) & =\frac{2 e^{-3 s}}{s} \\
\left(s^{2}-1\right) Y(s) & =\frac{2 e^{-3 s}}{s} \\
Y(s) & =\frac{2 e^{-3 s}}{s\left(s^{2}-1\right)}
\end{aligned}
$$

The solution is $y(t)=\mathscr{L}^{-1}\{Y(s)\}$. In order to perform this calculation, we must use partial fraction decomposition on the portion of $Y(s)$ that does not include $e^{-3 s}$. Omitting the details, we have:

$$
\begin{aligned}
F(s) & =\frac{2}{s\left(s^{2}-1\right)}=-\frac{2}{s}+\frac{1}{s-1}+\frac{1}{s+1} \\
\Rightarrow \quad f(t) & =\mathscr{L}^{-1}\{F(s)\}=-2+e^{t}+e^{-t}
\end{aligned}
$$

Using the property that $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)$ we have:

$$
y(t)=\left[-2+e^{t-3}+e^{-(t-3)}\right] u(t-3)
$$

2. The Taylor polynomial of degree 2 about $x=0$ is of the form:

$$
P_{2}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}
$$

We given that $y(0)=0$. Let's use this and the ODE to compute $y^{\prime}(0)$:

$$
y^{\prime}(0)=(0)^{2}+e^{y(0)}=0+e^{0}=1
$$

To compute $y^{\prime \prime}(0)$ we must first compute $y^{\prime \prime}$:

$$
y^{\prime \prime}=\left(x^{2}+e^{y}\right)^{\prime}=2 x+e^{y} y^{\prime}
$$

Then we have:

$$
y^{\prime \prime}(0)=2(0)+e^{y(0)} y^{\prime}(0)=0+e^{0}(1)=1
$$

Therefore, we have:

$$
y(x) \approx P_{2}(x)=0+x+\frac{1}{2} x^{2}
$$

