Math 220 Quiz 5 Solution

1. Find the solution to the following initial value problem:

$$
y^{\prime \prime}-4 y=4 \delta(t-1), y(0)=0, y^{\prime}(0)=0
$$

2. Determine the Taylor Polynomial of degree 2 that approximates the solution to:

$$
y^{\prime}=x+y^{2}, y(0)=1
$$

Solution:

1. Start by taking the Laplace transform of the equation and solve for $Y(s)$:

$$
\begin{aligned}
\mathscr{L}\left\{y^{\prime \prime}\right\}-4 \mathscr{L}\{y\} & =4 \mathscr{L}\{\delta(t-1)\} \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)-4 Y(s) & =\frac{4 e^{-s}}{s} \\
\left(s^{2}-4\right) Y(s) & =\frac{4 e^{-s}}{s} \\
Y(s) & =\frac{4 e^{-s}}{s\left(s^{2}-4\right)}
\end{aligned}
$$

The solution is $y(t)=\mathscr{L}^{-1}\{Y(s)\}$. In order to perform this calculation, we must use partial fraction decomposition on the portion of $Y(s)$ that does not include e^{-s}. Omitting the details, we have:

$$
\begin{aligned}
F(s) & =\frac{4}{s\left(s^{2}-4\right)}=-\frac{1}{s}+\frac{\frac{1}{2}}{s-2}+\frac{\frac{1}{2}}{s+2} \\
\Rightarrow \quad f(t) & =\mathscr{L}^{-1}\{F(s)\}=-1+\frac{1}{2} e^{2 t}+\frac{1}{2} e^{-2 t}
\end{aligned}
$$

Using the property that $\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(t-a) u(t-a)$ we have:

$$
y(t)=\left[-1+\frac{1}{2} e^{2(t-1)}+e^{-2(t-1)}\right] u(t-1)
$$

2. The Taylor polynomial of degree 2 about $x=0$ is of the form:

$$
P_{2}(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2!} x^{2}
$$

We given that $y(0)=1$. Let's use this and the ODE to compute $y^{\prime}(0)$:

$$
y^{\prime}(0)=0+[y(0)]^{2}=0+1^{2}=1
$$

To compute $y^{\prime \prime}(0)$ we must first compute $y^{\prime \prime}$:

$$
y^{\prime \prime}=\left(x+y^{2}\right)^{\prime}=1+2 y y^{\prime}
$$

Then we have:

$$
y^{\prime \prime}(0)=1+2 y(0) y^{\prime}(0)=1+2(1)(1)=3
$$

Therefore, we have:

$$
y(x) \approx P_{2}(x)=1+x+\frac{3}{2} x^{2}
$$

