Math 220 Quiz 6 Solution

1. Find the general solution to:

$$x^2y'' - 2xy' + 2y = 0$$

- 2. Classify these functions as being either even, odd, or neither:
 - (a) $f(x) = x^2$ (b) $f(x) = x \ln |x|$
 - (c) $f(x) = 2^x$
- 3. Given that the solution to the heat equation with zero temperature boundary conditions is:

$$u(x,t) = \sum_{n=1}^{\infty} c_n e^{-n^2 \pi^2 \beta t/L^2} \sin \frac{n\pi x}{L}$$

where $\beta = 1, L = \pi$, and the initial condition is:

 $u(x,0) = 2\sin 3x + 5\sin 4x - 6\sin 10x$

find the coefficients c_n and write the resulting solution u(x, t).

Solution:

1. This is a Cauchy-Euler equation. The *indicial equation* and its roots are:

$$r(r-1) - 2r + 2 = 0$$

$$r^2 - 3r + 2 = 0$$

$$(r-2)(r-1) = 0$$

$$\Rightarrow r = 2, r = 1$$

The general solution is:

$$y(x) = c_1 x^2 + c_2 x$$

2. (a) f(x) = x² is even since f(-x) = (-x)² = x² = f(x)
(b) f(x) = x ln |x| is odd since f(-x) = (-x) ln |-x| = -x ln |x| = -f(x)
(c) f(x) = 2^x is neither

3. Plugging in t = 0, $\beta = 1$, and $L = \pi$ into the solution and setting the result equal to the initial condition we have:

$$u(x,0) = \sum_{n=1}^{\infty} c_n \sin nx = 2\sin 3x + 5\sin 4x - 6\sin 10x$$

All of the c_n will be 0 except for $c_3 = 2$, $c_4 = 5$, and $c_{10} = -6$. Plugging these into the solution we get:

$$u(x,t) = 2e^{-9t}\sin 3x + 5e^{-25t}\sin 5x - 6e^{-100t}\sin 10x$$