Spring, 2007 - Exam 1 Solutions

1. (20 pts) Consider the initial value problem:

$$
y^{\prime}=2 x y\left(1+x^{2}\right)^{-1 / 2}, \quad y(0)=1
$$

(a) Is the differential equation separable?
(b) Is the differential equation linear?
(c) State the method you will use to solve for $y(x)$ and then find the solution (you may leave your answer in implicit form).

Solution:

(a) The differential equation is separable.
(b) The differential equation is also linear.
(c) We can use two methods to solve. Let's use Separation of Variables:

$$
\begin{aligned}
\frac{d y}{d x} & =2 x y\left(1+x^{2}\right)^{-1 / 2} \\
\frac{d y}{y} & =\frac{2 x}{\sqrt{1+x^{2}}} d x \\
\int \frac{d y}{y} & =\int \frac{2 x}{\sqrt{1+x^{2}}} d x \\
\ln |y| & =2 \sqrt{1+x^{2}}+C
\end{aligned}
$$

Use the initial condition $y(0)=1$ to solve for C :

$$
\begin{aligned}
\ln |1| & =2 \sqrt{1+0^{2}}+C \\
C & =-2
\end{aligned}
$$

The solution is then:

$$
\ln |y|=2 \sqrt{1+x^{2}}-2
$$

2. (20 pts) Consider the initial value problem: $y^{\prime}=\frac{3}{x}+y$ with $y(1)=-1$.
(a) Use Euler's method with step size $h=0.5$ to approximate the solution $y(x)$ at the point $x=2$.
(b) Use the improved Euler's method with step size $h=0.5$ to approximate the solution $y(x)$ at the point $x=1.5$.

Solution:

(a) One step of Euler's method gives us the approximate value of $y(1.5)$. We'll call this y_{e} for use in part (b):

$$
\begin{aligned}
& y_{1}=y_{0}+h f\left(x_{0}, y_{0}\right)=y_{0}+h\left(\frac{3}{x_{0}}+y_{0}\right) \\
& y_{1}=-1+\frac{1}{2}\left(\frac{3}{1}-1\right) \\
& y_{1}=0 \\
& x_{1}=x_{0}+h=1+\frac{1}{2}=1.5
\end{aligned}
$$

So, $y_{e}=0$. One more step gives us the approximate value of $y(2)$:

$$
\begin{aligned}
& y_{2}=y_{1}+h f\left(x_{1}, y_{1}\right)=y_{1}+h\left(\frac{3}{x_{1}}+y_{1}\right) \\
& y_{2}=0+\frac{1}{2}\left(\frac{3}{1.5}+0\right) \\
& y_{2}=1 \\
& x_{2}=x_{1}+h=1.5+0.5=2
\end{aligned}
$$

Therefore, $y(2) \approx 1$.
(b) One step of the Improved Euler's method gives us the approximate value of $y(1.5)$:

$$
\begin{aligned}
& y_{1}=y_{0}+\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right]=y_{0}+\frac{h}{2}\left[\left(\frac{3}{x_{0}}+y_{0}\right)+\left(\frac{3}{x_{1}}+y_{e}\right)\right] \\
& y_{1}=-1+\frac{1 / 2}{2}\left[\left(\frac{3}{1}-1\right)+\left(\frac{3}{1.5}+0\right)\right] \\
& y_{1}=0 \\
& x_{1}=x_{0}+h=1+\frac{1}{2}=1.5
\end{aligned}
$$

Therefore, $y(1.5) \approx 0$.
3. (20 pts) Complete each of the following:
(a) Find the general solution to: $y^{\prime \prime}+4 y^{\prime}+8 y=0$ (your answer should not contain the imaginary number i).
(b) Write the form of the particular solution to: $y^{\prime \prime}+4 y^{\prime}+8 y=1+e^{-2 x} \cos 2 x$ (do not solve for the coefficients).

Solution:

(a) The auxiliary equation and its roots are:

$$
\begin{aligned}
r^{2}+4 r+8 & =0 \\
r & =\frac{-4 \pm \sqrt{4^{2}-4(1)(8)}}{2(1)} \\
r & =-2 \pm 2 i
\end{aligned}
$$

The general solution is then:

$$
y=e^{-2 x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)
$$

(b) The second term in the non-homogeneous part is one of our homogeneous solutions. Therefore, we have a special case. The form of y_{p} is:

$$
y_{p}=A+x e^{-2 x}(B \cos 2 x+C \sin 2 x)
$$

4. (10 pts) A nitric acid solution flows at a constant rate of $4 \mathrm{~L} / \mathrm{min}$ into a large tank that initially held 100 L of pure water. The solution inside the tank is kept well-stirred and flows out of the tank at a rate of $3 \mathrm{~L} / \mathrm{min}$. If the concentration of nitric acid in the solution entering the tank is 0.1 , set up but do not solve the initial value problem for $x(t)$, the volume of nitric acid in the tank at time t.

Solution: Using the general equation for mixing problems of this type:

$$
\frac{d A}{d t}=r_{i} c_{i}-r_{o} \frac{A}{V_{0}+\left(r_{i}-r_{o}\right) t}
$$

and plugging in numbers we get:

$$
\frac{d A}{d t}=0.4-\frac{3}{100+t} A
$$

with the initial condition $A(0)=0$.
5. (30 pts) Consider the following second order, linear, constant coefficient, non-homogeneous differential equation:

$$
y^{\prime \prime}+6 y^{\prime}+5 y=3 e^{-2 x} .
$$

(a) Use the method of undetermined coefficients to find the particular solution $y_{p}(x)$ (you must solve for the coefficient(s)).
(b) Find the general solution.
(c) Now use variation of parameters to find the particular solution $y_{p}(x)$. Note: (1) If you have done this correctly, you will get the same answer as in part (a). (2) The following equations may be helpful:

$$
\begin{aligned}
v_{1}^{\prime} y_{1}+v_{2}^{\prime} y_{2} & =0 \\
v_{1}^{\prime} y_{1}^{\prime}+v_{2}^{\prime} y_{2}^{\prime} & =\frac{g(x)}{a}
\end{aligned}
$$

Solution:

(a) We guess a particular solution and compute its derivatives as follows:

$$
\begin{aligned}
y_{p} & =A e^{-2 x} \\
y_{p}^{\prime} & =-2 A e^{-2 x} \\
y_{p}^{\prime \prime} & =4 A e^{-2 x}
\end{aligned}
$$

This is not a special case since $r=-2$ is not a root of the auxiliary equation. Plugging y_{p} and its derivatives into the ODE we get:

$$
\begin{aligned}
y_{p}^{\prime \prime}+6 y_{p}^{\prime}+5 y_{p} & =3 e^{-2 x} \\
4 A e^{-2 x}+6\left(-2 A e^{-2 x}\right)+5 A e^{-2 x} & =3 e^{-2 x} \\
-3 A e^{-2 x} & =3 e^{-2 x} \\
-3 A & =3 \\
A & =-1
\end{aligned}
$$

The particular solution is then $y_{p}=-e^{-2 x}$.
(b) The general solution is $y=y_{h}+y_{p}$. We just found y_{p} so we must now find y_{h}. The auxiliary equation and its roots are:

$$
\begin{aligned}
r^{2}+6 r+5 & =0 \\
(r+5)(r+1) & =0 \\
r=-5, \quad r & =-1
\end{aligned}
$$

The general solution is then:

$$
y=c_{1} e^{-5 x}+c_{2} e^{-x}-e^{-2 x}
$$

(c) From the homogeneous solution we set $y_{1}=e^{-5 x}$ and $y_{2}=e^{-2 x}$. Plugging these into the variation of parameter equations we have:

$$
\begin{aligned}
v_{1}^{\prime} e^{-5 x}+v_{2}^{\prime} e^{-x} & =0 \\
-5 v_{1}^{\prime} e^{-5 x}-v_{2}^{\prime} e^{-x} & =3 e^{-2 x}
\end{aligned}
$$

Solving for v_{1}^{\prime} and v_{2}^{\prime} we get:

$$
\begin{aligned}
v_{1}^{\prime} & =-\frac{3}{4} e^{3 x} \\
v_{2}^{\prime} & =\frac{3}{4} e^{-x}
\end{aligned}
$$

We get v_{1} and v_{2} by integrating the above equations:

$$
\begin{aligned}
& v_{1}=-\frac{1}{4} e^{3 x} \\
& v_{2}=-\frac{3}{4} e^{-x}
\end{aligned}
$$

The particular solution is then:

$$
\begin{aligned}
& y_{p}=v_{1} y_{1}+v_{2} y_{2} \\
& y_{p}=-\frac{1}{4} e^{3 x} e^{-5 x}-\frac{3}{4} e^{-x} e^{-x} \\
& y_{p}=-\frac{1}{4} e^{-2 x}-\frac{3}{4} e^{-2 x} \\
& y_{p}=-e^{-2 x}
\end{aligned}
$$

just as we obtained in part (a).

