Spring, 2007 - Exam 2 Solutions

1. (20 pts) Find the general solution to the following system of first order ODEs:

$$
\begin{aligned}
& \frac{d x}{d t}=x+3 y+4 t \\
& \frac{d y}{d t}=x-y
\end{aligned}
$$

Solution: It's easiest to use elimination here. We'll start by solving the second equation for x :

$$
x=y^{\prime}+y
$$

Now we plug this result into the first equation and simplify:

$$
\begin{aligned}
x^{\prime} & =x+3 y+4 t \\
\left(y^{\prime}+y\right)^{\prime} & =y^{\prime}+y+3 y+4 t \\
y^{\prime \prime}+y^{\prime} & =y^{\prime}+4 y+4 t \\
y^{\prime \prime}-4 y & =4 t
\end{aligned}
$$

The auxiliary equation for the above ODE is $r^{2}-4=0$ and its roots are $r= \pm 2$. The homogeneous solution is then:

$$
y_{h}(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}
$$

The particular solution is of the form $y_{p}(t)=A t+B$. When we plug this into the ODE and solve for A and B we find that $A=-1$ and $B=0$. Therefore, the particular solution is $y_{p}=-t$ and the general solution is:

$$
y(t)=y_{h}(t)+y_{p}(t)=c_{1} e^{2 t}+c_{2} e^{-2 t}-t
$$

The solution for $x(t)$ is obtained from the equation $x(t)=y^{\prime}(t)+y(t)$ and goes as follows:

$$
x(t)=3 c_{1} e^{2 t}-c_{2} e^{-2 t}-t-1
$$

2. (20 pts) Compute the following expressions:
(a) $\mathscr{L}\left[t+\sin 3 t+e^{2 t} \cos t\right]$
(b) $\mathscr{L}\left[t e^{t}\right]$
(c) $\mathscr{L}^{-1}\left[\frac{2}{s\left(s^{2}+4\right)}\right]$

Solution:

(a) $\mathscr{L}\left[t+\sin 3 t+e^{2 t} \cos t\right]=\mathscr{L}[t]+\mathscr{L}[\sin 3 t]+\mathscr{L}\left[e^{2 t} \cos t\right]=\frac{1}{s^{2}}+\frac{3}{s^{2}+9}+\frac{s-2}{(s-2)^{2}+1}$
(b) $\mathscr{L}\left[t e^{t}\right]=\frac{1}{(s-1)^{2}}$
(c) Let $F(s)=\frac{1}{s}$ and $G(s)=\frac{2}{s^{2}+4}$. Then we have $f(t)=\mathscr{L}^{-1}[F(s)]=1$ and $g(t)=\mathscr{L}^{-1}[G(s)]=$ $\sin 2 t$. Using the convolution property we find that:

$$
\begin{aligned}
\mathscr{L}^{-1}[F(s) G(s)] & =f(t) * g(t) \\
& =\int_{0}^{t} 1 \cdot \sin 2 v d v \\
& =\left[-\frac{1}{2} \cos 2 v\right]_{0}^{t} \\
& =\frac{1}{2}-\frac{1}{2} \cos 2 t
\end{aligned}
$$

OR
We could use partial fraction decomposition:

$$
\begin{aligned}
\frac{2}{s\left(s^{2}+4\right)} & =\frac{A}{s}+\frac{B s+C}{s^{2}+4} \\
2 & =A\left(s^{2}+4\right)+(B s+C) s
\end{aligned}
$$

Letting $s=0$ we find that $A=\frac{1}{2}$. Letting $s=1$ and $s=-1$ we get the following system of equations:

$$
\begin{aligned}
& 2=\frac{5}{2}+B+C \\
& 2=\frac{5}{2}+B-C
\end{aligned}
$$

The solution to this system is $B=-\frac{1}{2}$ and $C=0$. Therefore, we have:

$$
\mathscr{L}^{-1}\left[\frac{2}{s\left(s^{2}+4\right)}\right]=\mathscr{L}^{-1}\left[\frac{\frac{1}{2}}{s}+\frac{-\frac{1}{2} s}{s^{2}+4}\right]=\frac{1}{2} \mathscr{L}^{-1}\left[\frac{1}{s}\right]-\frac{1}{2} \mathscr{L}^{-1}\left[\frac{s}{s^{2}+4}\right]=\frac{1}{2}-\frac{1}{2} \cos 2 t
$$

3. (20 pts) Complete each part below:
(a) Find the function $f(t)$ such that $f(t)=\mathscr{L}^{-1}\left[\frac{2 e^{-2 s}-4 e^{-4 s}}{s}\right]$.
(b) Solve the initial value problem:

$$
x^{\prime \prime}=f(t), \quad x(0)=0, \quad x^{\prime}(0)=1
$$

where $f(t)$ is the function you found in part (a).

Solution:

(a) $f(t)=2 u(t-2)-4 u(t-4)$
(b) We take the Laplace transform and solve for $X(s)$:

$$
\begin{aligned}
x^{\prime \prime} & =f(t) \\
\mathscr{L}\left[x^{\prime \prime}\right] & =\mathscr{L}[f(t)] \\
s^{2} X(s)-s x(0)-x^{\prime}(0) & =\frac{2 e^{-2 s}-4 e^{-4 s}}{s} \\
s^{2} X(s)-1 & =\frac{2 e^{-2 s}-4 e^{-4 s}}{s} \\
X(s) & =\frac{2 e^{-2 s}}{s^{3}}-\frac{4 e^{-4 s}}{s^{3}}+\frac{1}{s^{2}}
\end{aligned}
$$

The solution $x(t)$ is then the inverse Laplace transform of $X(s)$:

$$
\begin{aligned}
& x(t)=\mathscr{L}^{-1}[X(s)] \\
& x(t)=\mathscr{L}^{-1}\left[\frac{2 e^{-2 s}}{s^{3}}\right]-\mathscr{L}^{-1}\left[\frac{4 e^{-4 s}}{s^{3}}\right]+\mathscr{L}^{-1}\left[\frac{1}{s^{2}}\right] \\
& x(t)=(t-2)^{2} u(t-2)-2(t-4)^{2} u(t-4)+t
\end{aligned}
$$

4. (20 pts) Solve the initial value problem:

$$
y^{\prime \prime}-4 y=\delta(t-1), \quad y(0), y^{\prime}(0)=0
$$

Solution: We start by taking the Laplace transform of the ODE and solving for $Y(s)$:

$$
\begin{aligned}
y^{\prime \prime}-4 y & =4 \delta(t-1) \\
\mathscr{L}\left[y^{\prime \prime}-4 y\right] & =\mathscr{L}[4 \delta(t-1)] \\
\mathscr{L}\left[y^{\prime \prime}\right]-4 \mathscr{L}[y] & =4 \mathscr{L}[\delta(t-1)] \\
s^{2} Y(s)-s y(0)-y^{\prime}(0)-4 Y(s) & =4 e^{-s} \\
Y(s)\left(s^{2}-4\right) & =4 e^{-s} \\
Y(s) & =\frac{4 e^{-s}}{s^{2}-4}
\end{aligned}
$$

We must now find the inverse Laplace transform of $Y(s)$. To do this, we will use the property that:

$$
f(t-a) u(t-a)=\mathscr{L}^{-1}\left[e^{-a s} F(s)\right]
$$

Here, $a=1$ and $F(s)=\frac{4}{s^{2}-4}$. To find $f(t)=\mathscr{L}^{-1}[F(s)]$, we must perform partial fraction decomposition:

$$
\begin{aligned}
\frac{4}{s^{2}-4} & =\frac{A}{s-2}+\frac{B}{s+2} \\
4 & =A(s+2)+B(s-2)
\end{aligned}
$$

Letting $s=2$ we find that $A=1$ and letting $s=-2$ we find that $B=-1$. Therefore, we have

$$
f(t)=\mathscr{L}^{-1}\left[\frac{1}{s-2}-\frac{1}{s+2}\right]=e^{2 t}-e^{-2 t}
$$

Using the property with $a=1$ we then get the solution:

$$
y(t)=f(t-1) u(t-1)=\left(e^{2(t-1)}-e^{-2(t-1)}\right) u(t-1)
$$

5. (20 pts) Find the general solution for each of the following:
(a) $x^{2} y^{\prime \prime}-2 y=0$
(b) $x^{2} y^{\prime \prime}+5 x y^{\prime}+4 y=0$

Solution:

(a) The indicial equation and its roots are:

$$
\begin{aligned}
r(r-1)-2 & =0 \\
r^{2}-r-2 & =0 \\
(r-2)(r+1) & =0 \\
r=2, \quad r & =-1
\end{aligned}
$$

The roots are real and distinct. Therefore, the general solution is:

$$
y(x)=c_{1} x^{2}+c_{2} x^{-1}
$$

(b) The indicial equation and its roots are:

$$
\begin{aligned}
r(r-1)+5 r+4 & =0 \\
r^{2}+4 r+4 & =0 \\
(r+2)^{2} & =0 \\
r & =-2
\end{aligned}
$$

The root $r=-2$ is repeated. Therefore, the general solution is:

$$
y(x)=c_{1} x^{-2}+c_{2} x^{-2} \ln x
$$

