Math 220 - Section 10.6 Solutions

1. Given that $\alpha=1$ and $L=1$ the solution is of the form:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos n \pi t+b_{n} \sin n \pi t\right) \sin n \pi x
$$

where the a_{n} and b_{n} are found from the initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$ as follows:

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} a_{n} \sin n \pi x \\
& g(x)=\sum_{n=1}^{\infty} n \pi b_{n} \sin n \pi x
\end{aligned}
$$

The a_{n} are found by finding the Sine Series for $f(x)$:

$$
\begin{aligned}
& a_{n}=\frac{2}{1} \int_{0}^{1} x(1-x) \sin n \pi x d x \\
& a_{n}=\frac{4\left[1-(-1)^{n}\right]}{n^{3} \pi^{3}}
\end{aligned}
$$

The b_{n} are found by finding the Sine Series for $f(x)$:

$$
\begin{aligned}
n \pi b_{n} & =\frac{2}{1} \int_{0}^{1} \sin 7 \pi x \sin n \pi x d x \\
n \pi b_{n} & = \begin{cases}0 & n \neq 7 \\
1 & n=7\end{cases} \\
\Rightarrow \quad b_{7} & =\frac{1}{7 \pi} \text { and } b_{n}=0 \text { for } n \neq 7
\end{aligned}
$$

The solution is then:

$$
u(x, t)=\frac{1}{7 \pi} \sin 7 \pi t \sin 7 \pi x+\sum_{n=1}^{\infty}\left(\frac{4\left[1-(-1)^{n}\right]}{n^{3} \pi^{3}}\right) \cos n \pi t \sin n \pi x
$$

4. Given that $\alpha=3$ and $L=\pi$ the solution is of the form:

$$
u(x, t)=\sum_{n=1}^{\infty}\left(a_{n} \cos 3 n t+b_{n} \sin 3 n t\right) \sin n x
$$

where the a_{n} and b_{n} are found from the initial conditions $u(x, 0)=f(x)$ and $u_{t}(x, 0)=g(x)$ as follows:

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} a_{n} \sin n x \\
& g(x)=\sum_{n=1}^{\infty} 3 n b_{n} \sin n x
\end{aligned}
$$

Using the initial condition $u(x, 0)=\sin 4 x+7 \sin 5 x$ we find that:

$$
\begin{aligned}
& a_{4}=4, a_{5}=7 \\
& a_{n}=0 \text { for } n \neq 4,5
\end{aligned}
$$

The other initial condition is:

$$
u_{t}(x, 0)= \begin{cases}x, & 0<x<\pi / x \\ \pi-x, & \pi / x<x<\pi\end{cases}
$$

To get the b_{n} we must find the Sine Series for the function above:

$$
\begin{aligned}
3 n b_{n} & =\frac{2}{\pi}\left[\int_{0}^{\pi / 2} x \sin n x d x+\int_{\pi / 2}^{\pi}(\pi-x) \sin n x d x\right] \\
3 n b_{n} & =\frac{4}{n^{2} \pi} \sin \frac{n \pi}{2} \\
b_{n} & =\frac{4}{3 \pi n^{3}} \sin \frac{n \pi}{2}
\end{aligned}
$$

The solution is then:

$$
u(x, t)=4 \cos 12 t \sin 4 x+7 \cos 15 t \sin 5 x+\sum_{n=1}^{\infty} \frac{4}{3 \pi n^{3}} \sin \frac{n \pi}{2} \sin 3 n t \sin n x
$$

