Math 220 - Section 1.3 Solutions

1. For the ODE:

$$
\frac{d y}{d x}=\frac{4 x}{y}
$$

(a) The lines $y= \pm 2 x$ are solutions to the ODE because the equation is satisfied when we plug them into the ODE:

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{4 x}{y} \\
\frac{d}{d x}(\pm 2 x) & =\frac{4 x}{ \pm 2 x} \\
\pm 2 & = \pm 2
\end{aligned}
$$

Furthermore, $x \neq 0$. Otherwise, if $x=0$ then $y= \pm 2(0)=0$ and $\frac{d y}{d x}$ would be undefined.
(b) See the figure for the solution satisfying $y(0)=2$.
(c) See the figure for the solution satisfying $y(2)=1$.

(d) For part (b), as $x \rightarrow+\infty$ the solution tends to infinity and $y=2 x$ is an asymptote. As $x \rightarrow-\infty$ the solution tends to infinity and $y=-2 x$ is an asymptote. The solution for part (c) tends to infinity and $y=2 x$ is an asymptote. However, there is no solution when $x \rightarrow-\infty$ because the solution is not defined for $x<2$.
5. The logistic equation is given by:

$$
\frac{d p}{d t}=3 p-2 p^{2}
$$

(a) The direction field is shown below:

(b) If $p(0)=3$, it appears from the direction field that the solution will approach 1.5 as $t \rightarrow \infty$.
(c) If $p(0)=0.8$, it appears from the direction field that the solution will approach 1.5 as $t \rightarrow \infty$.
(d) A population of 2000 can never decline to 800 . Any solution curve that crosses $p(t)=2$ will asymptotically approach $p(t)=1.5$ but will never cross this line.

