Math 220 - Section 2.3 Solutions

9. The ODE:

$$
\frac{d r}{d \theta}+(\tan \theta) r=\sec \theta
$$

is in standard form because the coefficient of $\frac{d r}{d \theta}$ is 1 . Therefore, we have $P(\theta)=\tan \theta$ and $Q(\theta)=\sec \theta$. The integrating factor, $\mu(\theta)$, is then:

$$
\mu(\theta)=\exp \left(\int P(\theta) d \theta\right)=\exp \left(\int \tan \theta d \theta\right)=\exp (\ln |\sec \theta+\tan \theta|)=\sec \theta+\tan \theta
$$

Therefore, we have:

$$
\begin{aligned}
r(\theta) & =\frac{1}{\mu(\theta)}\left[\int \mu(\theta) Q(\theta) d \theta+C\right] \\
r(\theta) & =\frac{1}{\sec \theta+\tan \theta}\left[\int\left(\sec ^{2} \theta+\sec \theta \tan \theta\right) d \theta+C\right] \\
r(\theta) & =\frac{1}{\sec \theta+\tan \theta}[(\tan \theta+\sec \theta)+C] \\
r(\theta) & =1+\frac{C}{\sec \theta+\tan \theta}
\end{aligned}
$$

13. In the equation:

$$
y \frac{d x}{d y}+2 x=5 y^{3}
$$

x is the dependent variable while y is the independent variable. So, we need to solve for x as a function of y instead of the other way around like we're used to doing.
First, we must put the ODE in standard form by dividing the entire equation by y :

$$
\begin{aligned}
& y \frac{d x}{d y}+2 x=5 y^{3} \\
& \frac{d x}{d y}+\frac{2}{y} x=5 y^{2}
\end{aligned}
$$

So $P(y)=\frac{2}{y}$ and $Q(y)=5 y^{2}$. The integrating factor, $\mu(y)$, is then:

$$
\mu(y)=\exp \left(\int \frac{2}{y} d y\right)=\exp (2 \ln y)=\exp \left(\ln y^{2}\right)=y^{2}
$$

Therefore, the solution is:

$$
\begin{aligned}
& x(y)=\frac{1}{\mu(y)}\left[\int \mu(y) Q(y) d y+C\right] \\
& x(y)=\frac{1}{y^{2}}\left[\int\left(y^{2}\left(5 y^{2}\right) d y+C\right]\right. \\
& x(y)=\frac{1}{y^{2}}\left[\int 5 y^{4} d y+C\right] \\
& x(y)=\frac{1}{y^{2}}\left[y^{5}+C\right] \\
& x(y)=y^{3}+\frac{C}{y^{2}}
\end{aligned}
$$

17. To solve the IVP:

$$
\frac{d y}{d x}-\frac{y}{x}=x e^{x}, \quad y(1)=e-1
$$

we identify $P(x)=-\frac{1}{x}$ and $Q(x)=x e^{x}$. The integrating factor $\mu(x)$ is:

$$
\mu(x)=\exp \left(\int P(x) d x\right)=\exp \left(-\int \frac{d x}{x}\right)=\exp (-\ln x)=\exp \left(\ln x^{-1}\right)=x^{-1}
$$

The general solution is:

$$
\begin{aligned}
& y(x)=\frac{1}{\mu(x)}\left[\int \mu(x) Q(x) d x+C\right] \\
& y(x)=\frac{1}{x^{-1}}\left[\int\left(x^{-1}\right) x e^{x} d x+C\right] \\
& y(x)=x\left[\int e^{x} d x+C\right] \\
& y(x)=x\left[e^{x}+C\right] \\
& y(x)=x e^{x}+C x
\end{aligned}
$$

Using the initial condition $y(1)=e-1$, we find C :

$$
\begin{aligned}
y(1) & =e-1 \\
(1) e^{1}+C(1) & =e-1 \\
e+C & =e-1 \\
C & =-1
\end{aligned}
$$

The solution is:

$$
y(x)=x e^{x}-x
$$

18. To solve the IVP:

$$
\frac{d y}{d x}+4 y=e^{-x}, \quad y(0)=\frac{4}{3}
$$

we identify $P(x)=4$ and $Q(x)=e^{-x}$. The integrating factor $\mu(x)$ is:

$$
\mu(x)=\exp \left(\int P(x) d x\right)=\exp \left(\int 4 d x\right)=\exp (4 x)=e^{4 x}
$$

The general solution is:

$$
\begin{aligned}
& y(x)=\frac{1}{\mu(x)}\left[\int \mu(x) Q(x) d x+C\right] \\
& y(x)=\frac{1}{e^{4 x}}\left[\int e^{4 x} e^{-x} d x+C\right] \\
& y(x)=e^{-4 x}\left[\int e^{3 x} d x+C\right] \\
& y(x)=e^{-4 x}\left[\frac{1}{3} e^{3 x}+C\right] \\
& y(x)=\frac{1}{3} e^{-x}+C e^{-4 x}
\end{aligned}
$$

Using the initial condition $y(0)=\frac{4}{3}$, we find C :

$$
\begin{aligned}
y(0) & =\frac{4}{3} \\
\frac{1}{3} e^{-0}+C e^{4(0)} & =\frac{4}{3} \\
\frac{1}{3}+C & =\frac{4}{3} \\
C & =1
\end{aligned}
$$

The solution is:

$$
y(x)=\frac{1}{3} e^{-x}+e^{-4 x}
$$

35. (a) $A(t)$ is found by starting with the ODE we derived in class for mixing problems of this type, plugging in the numbers, and solving:

$$
\begin{aligned}
\frac{d A}{d t} & =r_{i} c_{i}-r_{o} \frac{A}{V_{0}+\left(r_{i}-r_{o}\right) t} \\
\frac{d A}{d t} & =(5)(0.2)-(5) \frac{A}{500+(5-5) t} \\
\frac{d A}{d t} & =1-\frac{A}{100} \\
\frac{d A}{d t}+\frac{1}{100} A & =1
\end{aligned}
$$

This equation is in standard form with $P(t)=\frac{1}{100}$ and $Q(t)=1$. Therefore, the integrating factor $\mu(t)$ is:

$$
\mu(t)=\exp \left(\int P(t) d t\right)=\exp \left(\int \frac{1}{100} d t\right)=e^{t / 100}
$$

Therefore, the solution is:

$$
\begin{aligned}
& A(t)=\frac{1}{\mu(t)}\left[\int \mu(t) Q(t) d t+C\right] \\
& A(t)=e^{-t / 100}\left[\int e^{t / 100} d t+C\right] \\
& A(t)=e^{-t / 100}\left[100 e^{t / 100}+C\right] \\
& A(t)=100+C e^{-t / 100}
\end{aligned}
$$

Find C using the initial condition $A(0)=5$:

$$
\begin{aligned}
5 & =100+C e^{-0 / 100} \\
C & =-95
\end{aligned}
$$

The solution is then:

$$
A(t)=100-95 e^{-t / 100}
$$

After 10 min we have $A(10)=100-95 e^{-10 / 100}=14.0404 \mathrm{~kg}$. The concentration is then:

$$
c=\frac{\text { mass }}{\text { volume }}=\frac{14.0404 \mathrm{~kg}}{500 \mathrm{~L}}=0.281 \frac{\mathrm{~kg}}{\mathrm{~L}}
$$

(b) Again, we solve by starting with the generic ODE for mixing problems, plugging in numbers, and solving:

$$
\begin{aligned}
\frac{d A}{d t} & =r_{i} c_{i}-r_{o} \frac{A}{V_{0}+\left(r_{i}-r_{o}\right) t} \\
\frac{d A}{d t} & =(5)(0.2)-(6) \frac{A}{500+(5-6) t} \\
\frac{d A}{d t} & =1-\frac{6 A}{500-t} \\
\frac{d A}{d t}+\frac{6}{500-t} A & =1
\end{aligned}
$$

The integrating factor for this equation is:

$$
\mu(t)=\exp \left(\int \frac{6}{500-t} d t\right)=\exp (-6 \ln (500-t))=(500-t)^{-6}
$$

Therefore, the solution is:

$$
\begin{aligned}
& A(t)=\frac{1}{\mu(t)}\left[\int \mu(t)(1) d t+C\right] \\
& A(t)=\frac{1}{(500-t)^{-6}}\left[\int(500-t)^{-6} d t+C\right] \\
& A(t)=(500-t)^{6}\left[\frac{1}{5}(500-t)^{-5}+C\right] \\
& A(t)=\frac{1}{5}(500+t)+C(500-t)^{6}
\end{aligned}
$$

Find C using the initial condition $A(0)=14.0404 \mathrm{~kg}$:

$$
\begin{aligned}
14.0404 & =\frac{1}{5}(500)+C(500)^{6} \\
C & =(500)^{-6}(14.0404-100)
\end{aligned}
$$

After 20 min, we then have:

$$
\begin{aligned}
& A(20)=\frac{1}{5}(500-20)+C(500-20)^{6} \\
& A(20)=28.7145 \mathrm{~kg}
\end{aligned}
$$

The concentration is then:

$$
c=\frac{\text { mass }}{\text { volume }}=\frac{28.7145 \mathrm{~kg}}{500-20 \mathrm{~L}}=0.0598 \frac{\mathrm{~kg}}{\mathrm{~L}}
$$

